An algorithm of path based timing optimization by buffer insertion is presented.The algorithm adopts a high order model to estimate interconnect delay and a nonlinear delay model based on look up table for gate dela...An algorithm of path based timing optimization by buffer insertion is presented.The algorithm adopts a high order model to estimate interconnect delay and a nonlinear delay model based on look up table for gate delay estimation.And heuristic method of buffer insertion is presented to reduce delay.The algorithm is tested by industral circuit case.Experimental results show that the algorithm can optimize the timing of circuit efficiently and the timing constraint is satisfied.展开更多
A fine-grain sleep transistor insertion technique based on our simplified leakage current and delay models is proposed to reduce leakage current. The key idea is to model the leakage current reduction problem as a mix...A fine-grain sleep transistor insertion technique based on our simplified leakage current and delay models is proposed to reduce leakage current. The key idea is to model the leakage current reduction problem as a mixed-integer linear programming (MLP) problem in order to simultaneously place and size the sleep transistors optimally. Because of better circuit slack utilization, our experimental results show that the MLP model can save leakage by 79.75%, 93.56%, and 94.99% when the circuit slowdown is 0%, 3%, and 5%, respectively. The MLP model also achieves on average 74.79% less area penalty compared to the conventional fixed slowdown method when the circuit slowdown is 7%.展开更多
文摘An algorithm of path based timing optimization by buffer insertion is presented.The algorithm adopts a high order model to estimate interconnect delay and a nonlinear delay model based on look up table for gate delay estimation.And heuristic method of buffer insertion is presented to reduce delay.The algorithm is tested by industral circuit case.Experimental results show that the algorithm can optimize the timing of circuit efficiently and the timing constraint is satisfied.
文摘A fine-grain sleep transistor insertion technique based on our simplified leakage current and delay models is proposed to reduce leakage current. The key idea is to model the leakage current reduction problem as a mixed-integer linear programming (MLP) problem in order to simultaneously place and size the sleep transistors optimally. Because of better circuit slack utilization, our experimental results show that the MLP model can save leakage by 79.75%, 93.56%, and 94.99% when the circuit slowdown is 0%, 3%, and 5%, respectively. The MLP model also achieves on average 74.79% less area penalty compared to the conventional fixed slowdown method when the circuit slowdown is 7%.