无线供能及移动边缘计算技术的整合为下一代无线通信网的实现提供了技术支持。然而,用户数量的激增将对诸如系统响应时效性和超低延时等需求的实现提出了新的挑战。因此,如何设计迭代次数少、收敛速度快、灵活性强的实时计算卸载策略成...无线供能及移动边缘计算技术的整合为下一代无线通信网的实现提供了技术支持。然而,用户数量的激增将对诸如系统响应时效性和超低延时等需求的实现提出了新的挑战。因此,如何设计迭代次数少、收敛速度快、灵活性强的实时计算卸载策略成了研究的新热点。文章梳理了无线供能移动边缘计算(Wireless Powered Mobile Edge Computing,WP-MEC)系统在实现超低延时需求上面临的问题与挑战;总结了WP-MEC系统的网络模型及其计算卸载策略的研究概况;详细阐述了4种不同接入方式下的WP-MEC系统的计算卸载策略研究现状;对比分析了各类传统的数值优化方法及深度强化学习优化方法在实时计算卸载决策方面的优劣;对低复杂度高效计算卸载策略的发展进行总结与展望,提出了延时最小化计算卸载策略的3个关键研究方向。展开更多
The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the ...The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the methods of determining the models of calculating and correcting of time-delay are proposed. The methods have been proved to be effective in real satellite control engineering.展开更多
The partial oxidation of hydrocarbons is an important technical route to produce acetylene for chemical industry.The partial oxidation reactor is the key to high acetylene yields.This work is an experimental and numer...The partial oxidation of hydrocarbons is an important technical route to produce acetylene for chemical industry.The partial oxidation reactor is the key to high acetylene yields.This work is an experimental and numerical study on the use of a methane flame to produce acetylene.A lab scale partial oxidation reactor was used to produce ultra fuel-rich premixed jet flames.The axial temperature and species concentration profiles were measured for different equivalence ratios and preheating temperatures,and these were compared to numerical results from Computational Fluid Dynamics(CFD)simulations that used the Reynolds Averaged Navier-Stokes Probability Density Function(RANS-PDF)approach coupled with detailed chemical mechanisms.The Leeds 1.5,GRI 3.0 and San Diego mechanisms were used to investigate the effect of the detailed chemical mechanisms.The effects of equivalence ratio and preheating temperature on acetylene production were experimentally and numerically studied.The experimental validations indicated that the present numerical simulation provided reliable prediction on the partial oxidation of methane.Using this simulation method the optimal equivalence ratio for acetylene production was determined to be 3.6.Increasing preheating temperature improved acetylene production and shortened greatly the ignition delay time.So the increase of preheating temperature had to be limited to avoid uncontrolled ignition in the mixing chamber and the pyrolysis of methane in the preheater.展开更多
To further reduce the delay in cellular edge computing systems, a new type of resource scheduling algorithm is proposed. Without assuming the knowledge of the statistics of user task arrival traffic, the analytical fo...To further reduce the delay in cellular edge computing systems, a new type of resource scheduling algorithm is proposed. Without assuming the knowledge of the statistics of user task arrival traffic, the analytical formulae of the communication and computing queueing delays in many-to-one multi-server cellular edge computing systems are derived by using the arriving curve and leaving curve. Based on the analytical formulae, an optimization problem of delay minimization is directly formulated, and then a novel scheduling algorithm is designed. The delay performance of the proposed algorithm is evaluated via simulation experiments. Under the considered simulation parameters, the proposed algorithm can achieve 12% less total delay, as compared to the traditional algorithms. System parameters including the weight, the amount of computing resources provided by servers, and the average user task arrival rate have impact on the percentage of delay reduction. Therefore, compared with the queue length optimization based traditional scheduling algorithms, the proposed delay optimization-based scheduling algorithm can further reduce delay.展开更多
To further improve delay performance in multi-cell cellular edge computing systems,a new delay-driven joint communication and computing resource BP(backpressure)scheduling algorithm is proposed.Firstly,the mathematica...To further improve delay performance in multi-cell cellular edge computing systems,a new delay-driven joint communication and computing resource BP(backpressure)scheduling algorithm is proposed.Firstly,the mathematical models of the communication delay and computing delay in multi-cell cellular edge computing systems are established and expressed as virtual delay queues.Then,based on the virtual delay models,a novel joint wireless subcarrier and virtual machine resource scheduling algorithm is proposed to stabilize the virtual delay queues in the framework of the BP scheduling principle.Finally,the delay performance of the proposed virtual queue-based BP scheduling algorithm is evaluated via simulation experiments and compared with the traditional queue length-based BP scheduling algorithm.Results show that under the considered simulation parameters,the total delay of the proposed BP scheduling algorithm is always lower than that of the traditional queue length-based BP scheduling algorithm.The percentage of the reduced total delay can be as high as 51.29%when the computing resources are heterogeneously configured.Therefore,compared with the traditional queue length-based BP scheduling algorithms,the proposed virtual delay queue-based BP scheduling algorithm can further reduce delay in multi-cell cellular edge computing systems.展开更多
The error sources related to the laser rangefinder, GPS and INS are analyzed in details. Several coordinates systems used in airborne laser scanning are set up, and then the basic formula of system is given. This pape...The error sources related to the laser rangefinder, GPS and INS are analyzed in details. Several coordinates systems used in airborne laser scanning are set up, and then the basic formula of system is given. This paper emphasizes on discussing the kinematic offset correction between GPS antenna phase center and laser fired point. And kinematic time delay influence on laser footprint position, the ranging errors, positioning errors, attitude errors and integration errors of the system are also explored. Finally, the result shows that the kinematic time delay can be neglected as compared with other error sources. The accuracy of the coordinates is not only influenced by the amplitude of the error, but also controlled by the operation parameters such as flight height, scanning angle amplitude and attitude magnitude of the platform.展开更多
A reduced combustion kinetic model for the methanol-gasoline blended fuels for SI engines was developed. Sensitivity analysis and rate constant variation methods were used to optimize the kinetic model. Flame propagat...A reduced combustion kinetic model for the methanol-gasoline blended fuels for SI engines was developed. Sensitivity analysis and rate constant variation methods were used to optimize the kinetic model. Flame propagation, shock-tube and jet-stirred reactor systems were modeled in CHEMKIN. The laminar flame speed, ignition delay time and change in concentrations of species were simulated using the reduced kinetic model. The simulation results of reduced chemical mechanism agreed well with the relevant experimental data published in the literature. The experimental investigations on engine bench were also carried out. The in-cylinder pressure and exhaust emissions were obtained by using a combustion analyzer and an FTIR(Fourier transform infrared spectroscopy) spectrometer. Meanwhile, an engine in-cylinder CFD model was established in AVL FIRE and was coupled with the proposed reduced chemical mechanism to simulate the combustion process of methanol-gasoline blends. The simulated combustion process showed good agreement with the engine experimental results and the predicted emissions were found to be in accordance with the FTIR results.展开更多
The properties of the linear chirped fiber grating (CFG) which is used in the true time delay unit of the optical beamforming networks (OBFNs) are studied intensively through theoretical analyses and numerical cal...The properties of the linear chirped fiber grating (CFG) which is used in the true time delay unit of the optical beamforming networks (OBFNs) are studied intensively through theoretical analyses and numerical calculations. It is concluded that the dispersion of the CFG is equal to 1/(3Gc), where G is the chirp coefficient of CFG and c is the light speed. Based on this relationship, a simplified designing process of a CFG which satisfies the requirements of the O13 FN is given. The simula- tion results are coincident with the theoretical conclusions.展开更多
文摘无线供能及移动边缘计算技术的整合为下一代无线通信网的实现提供了技术支持。然而,用户数量的激增将对诸如系统响应时效性和超低延时等需求的实现提出了新的挑战。因此,如何设计迭代次数少、收敛速度快、灵活性强的实时计算卸载策略成了研究的新热点。文章梳理了无线供能移动边缘计算(Wireless Powered Mobile Edge Computing,WP-MEC)系统在实现超低延时需求上面临的问题与挑战;总结了WP-MEC系统的网络模型及其计算卸载策略的研究概况;详细阐述了4种不同接入方式下的WP-MEC系统的计算卸载策略研究现状;对比分析了各类传统的数值优化方法及深度强化学习优化方法在实时计算卸载决策方面的优劣;对低复杂度高效计算卸载策略的发展进行总结与展望,提出了延时最小化计算卸载策略的3个关键研究方向。
文摘The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the methods of determining the models of calculating and correcting of time-delay are proposed. The methods have been proved to be effective in real satellite control engineering.
基金Supported by the National Natural Science Foundation of China(20976090)the Foundation for the Author of National Excellent Doctoral Dissertation of China(200757)
文摘The partial oxidation of hydrocarbons is an important technical route to produce acetylene for chemical industry.The partial oxidation reactor is the key to high acetylene yields.This work is an experimental and numerical study on the use of a methane flame to produce acetylene.A lab scale partial oxidation reactor was used to produce ultra fuel-rich premixed jet flames.The axial temperature and species concentration profiles were measured for different equivalence ratios and preheating temperatures,and these were compared to numerical results from Computational Fluid Dynamics(CFD)simulations that used the Reynolds Averaged Navier-Stokes Probability Density Function(RANS-PDF)approach coupled with detailed chemical mechanisms.The Leeds 1.5,GRI 3.0 and San Diego mechanisms were used to investigate the effect of the detailed chemical mechanisms.The effects of equivalence ratio and preheating temperature on acetylene production were experimentally and numerically studied.The experimental validations indicated that the present numerical simulation provided reliable prediction on the partial oxidation of methane.Using this simulation method the optimal equivalence ratio for acetylene production was determined to be 3.6.Increasing preheating temperature improved acetylene production and shortened greatly the ignition delay time.So the increase of preheating temperature had to be limited to avoid uncontrolled ignition in the mixing chamber and the pyrolysis of methane in the preheater.
基金The National Natural Science Foundation of China(No.61571111)
文摘To further reduce the delay in cellular edge computing systems, a new type of resource scheduling algorithm is proposed. Without assuming the knowledge of the statistics of user task arrival traffic, the analytical formulae of the communication and computing queueing delays in many-to-one multi-server cellular edge computing systems are derived by using the arriving curve and leaving curve. Based on the analytical formulae, an optimization problem of delay minimization is directly formulated, and then a novel scheduling algorithm is designed. The delay performance of the proposed algorithm is evaluated via simulation experiments. Under the considered simulation parameters, the proposed algorithm can achieve 12% less total delay, as compared to the traditional algorithms. System parameters including the weight, the amount of computing resources provided by servers, and the average user task arrival rate have impact on the percentage of delay reduction. Therefore, compared with the queue length optimization based traditional scheduling algorithms, the proposed delay optimization-based scheduling algorithm can further reduce delay.
基金The National Natural Science Foundation of China(No.61571111)the Incubation Project of the National Natural Science Foundation of China at Nanjing University of Posts and Telecommunications(No.NY219106)
文摘To further improve delay performance in multi-cell cellular edge computing systems,a new delay-driven joint communication and computing resource BP(backpressure)scheduling algorithm is proposed.Firstly,the mathematical models of the communication delay and computing delay in multi-cell cellular edge computing systems are established and expressed as virtual delay queues.Then,based on the virtual delay models,a novel joint wireless subcarrier and virtual machine resource scheduling algorithm is proposed to stabilize the virtual delay queues in the framework of the BP scheduling principle.Finally,the delay performance of the proposed virtual queue-based BP scheduling algorithm is evaluated via simulation experiments and compared with the traditional queue length-based BP scheduling algorithm.Results show that under the considered simulation parameters,the total delay of the proposed BP scheduling algorithm is always lower than that of the traditional queue length-based BP scheduling algorithm.The percentage of the reduced total delay can be as high as 51.29%when the computing resources are heterogeneously configured.Therefore,compared with the traditional queue length-based BP scheduling algorithms,the proposed virtual delay queue-based BP scheduling algorithm can further reduce delay in multi-cell cellular edge computing systems.
文摘The error sources related to the laser rangefinder, GPS and INS are analyzed in details. Several coordinates systems used in airborne laser scanning are set up, and then the basic formula of system is given. This paper emphasizes on discussing the kinematic offset correction between GPS antenna phase center and laser fired point. And kinematic time delay influence on laser footprint position, the ranging errors, positioning errors, attitude errors and integration errors of the system are also explored. Finally, the result shows that the kinematic time delay can be neglected as compared with other error sources. The accuracy of the coordinates is not only influenced by the amplitude of the error, but also controlled by the operation parameters such as flight height, scanning angle amplitude and attitude magnitude of the platform.
基金supported by the National Natural Science Foundation of China(Grant Nos.50776078&51106136)
文摘A reduced combustion kinetic model for the methanol-gasoline blended fuels for SI engines was developed. Sensitivity analysis and rate constant variation methods were used to optimize the kinetic model. Flame propagation, shock-tube and jet-stirred reactor systems were modeled in CHEMKIN. The laminar flame speed, ignition delay time and change in concentrations of species were simulated using the reduced kinetic model. The simulation results of reduced chemical mechanism agreed well with the relevant experimental data published in the literature. The experimental investigations on engine bench were also carried out. The in-cylinder pressure and exhaust emissions were obtained by using a combustion analyzer and an FTIR(Fourier transform infrared spectroscopy) spectrometer. Meanwhile, an engine in-cylinder CFD model was established in AVL FIRE and was coupled with the proposed reduced chemical mechanism to simulate the combustion process of methanol-gasoline blends. The simulated combustion process showed good agreement with the engine experimental results and the predicted emissions were found to be in accordance with the FTIR results.
基金supported by the National Natural Science Foundation of China (No.60702005)the Hi-Tech Research and Development Program of China (Nos.2009AA01Z218 and 2009AA01Z255)+1 种基金the National Basic Research Program of China (973 Program) (Nos.2010CB328202and 2010CB328204)the Fundamental Research Funds for the Central
文摘The properties of the linear chirped fiber grating (CFG) which is used in the true time delay unit of the optical beamforming networks (OBFNs) are studied intensively through theoretical analyses and numerical calculations. It is concluded that the dispersion of the CFG is equal to 1/(3Gc), where G is the chirp coefficient of CFG and c is the light speed. Based on this relationship, a simplified designing process of a CFG which satisfies the requirements of the O13 FN is given. The simula- tion results are coincident with the theoretical conclusions.