We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existin...We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existing schemes either consider slot-by-slot scheduling with queue depth serving as the delay metric or assume that each input-output connection has the same delay bound in the batch scheduling mode. The former scheme neglects the effect of reconfiguration overhead, which may result in crippled system performance, while the latter cannot satisfy users' differentiated Quality of Service(Qo S) requirements. To make up these deficiencies, we propose a new batch scheduling scheme to meet the various portto-port delay requirements in a best-effort manner. Moreover, a speedup is considered to compensate for both the reconfiguration overhead and the unavoidable slots wastage in the switch fabric. With traffic matrix and delay constraint matrix given, this paper proposes two heuristic algorithms Stringent Delay First(SDF) and m-order SDF(m-SDF) to realize the 100% packet switching, while maximizing the delay constraints satisfaction ratio. The performance of our scheme is verified by extensive numerical simulations.展开更多
This paper proposes an integrative scheme of DiffServ (differentiated service) for the IP-based network. In the scheme, QoS (Quality of Service) is ranked according to the level of both the queuing delay and the d...This paper proposes an integrative scheme of DiffServ (differentiated service) for the IP-based network. In the scheme, QoS (Quality of Service) is ranked according to the level of both the queuing delay and the drop precedence that base on the relative differentiated service; it does not take the resource reservation problem into consideration for making its implementation more simple and flexible. We will propose an implemented architecture including edge routers and core routers, and the PHB (per-hop-behavior) architecture of the routers is generalized. We adopt ERED (extended random early discard) mechanism for drop precedence and use proportional delay differentiation for queuing delay. In the proportional delay differentiation topic, we propose a new WTP (waiting time priority)-like algorithm. Besides, a new stochastic petri net model of the PHB model is given, and the performance of whole implemented PHB architecture is analyzed, too.展开更多
基金supported by the Major State Basic Research Program of China (973 project No. 2013CB329301 and 2010CB327806)the Natural Science Fund of China (NSFC project No. 61372085, 61032003, 61271165 and 61202379)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (RFDP project No. 20120185110025, 20120185110030 and 20120032120041)supported by Tianjin Key Laboratory of Cognitive Computing and Application, School of Computer Science and Technology, Tianjin University, Tianjin, P. R. China
文摘We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existing schemes either consider slot-by-slot scheduling with queue depth serving as the delay metric or assume that each input-output connection has the same delay bound in the batch scheduling mode. The former scheme neglects the effect of reconfiguration overhead, which may result in crippled system performance, while the latter cannot satisfy users' differentiated Quality of Service(Qo S) requirements. To make up these deficiencies, we propose a new batch scheduling scheme to meet the various portto-port delay requirements in a best-effort manner. Moreover, a speedup is considered to compensate for both the reconfiguration overhead and the unavoidable slots wastage in the switch fabric. With traffic matrix and delay constraint matrix given, this paper proposes two heuristic algorithms Stringent Delay First(SDF) and m-order SDF(m-SDF) to realize the 100% packet switching, while maximizing the delay constraints satisfaction ratio. The performance of our scheme is verified by extensive numerical simulations.
文摘This paper proposes an integrative scheme of DiffServ (differentiated service) for the IP-based network. In the scheme, QoS (Quality of Service) is ranked according to the level of both the queuing delay and the drop precedence that base on the relative differentiated service; it does not take the resource reservation problem into consideration for making its implementation more simple and flexible. We will propose an implemented architecture including edge routers and core routers, and the PHB (per-hop-behavior) architecture of the routers is generalized. We adopt ERED (extended random early discard) mechanism for drop precedence and use proportional delay differentiation for queuing delay. In the proportional delay differentiation topic, we propose a new WTP (waiting time priority)-like algorithm. Besides, a new stochastic petri net model of the PHB model is given, and the performance of whole implemented PHB architecture is analyzed, too.