The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance...The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.展开更多
The paper represents very simple procedure of identification, based on step response of the process. Results of identification are extended Strejc's models (named ZenanX model, models with n equivalent time constant...The paper represents very simple procedure of identification, based on step response of the process. Results of identification are extended Strejc's models (named ZenanX model, models with n equivalent time constants and delay time). Described mathematically proved equations which show an easy way of filtering and differentiation step response with the help of the data window. It also supports the contention that the point of intersection of tangent to the integrated step response and the X axis represents the sum of time constants and delay time, and showed the method (named ZenoX method) of determining Strej c extended model. For the determination of the impulse response (important for definition of models) are used orthonormal functions (Laguerre). Simulations are made in the package Matlab. The paper represents results from numerous simulations. The method allows simple and rapid extraction of the Extended Strejc model (ZenanX model), which is often used to adjust the controllers. Through the simulations of the procedure of removing noise from measured step response is described.展开更多
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the "KACST Annual Program" at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project number AT-32-41
文摘The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.
文摘The paper represents very simple procedure of identification, based on step response of the process. Results of identification are extended Strejc's models (named ZenanX model, models with n equivalent time constants and delay time). Described mathematically proved equations which show an easy way of filtering and differentiation step response with the help of the data window. It also supports the contention that the point of intersection of tangent to the integrated step response and the X axis represents the sum of time constants and delay time, and showed the method (named ZenoX method) of determining Strej c extended model. For the determination of the impulse response (important for definition of models) are used orthonormal functions (Laguerre). Simulations are made in the package Matlab. The paper represents results from numerous simulations. The method allows simple and rapid extraction of the Extended Strejc model (ZenanX model), which is often used to adjust the controllers. Through the simulations of the procedure of removing noise from measured step response is described.