How to control the dipole orientation of organic emitters is a challenge in the field of organic light-emitting diodes(OLEDs).Herein,a linear thermally activated delayed fluorescence(TADF)molecule,PhNAI-PMSBA,bearing ...How to control the dipole orientation of organic emitters is a challenge in the field of organic light-emitting diodes(OLEDs).Herein,a linear thermally activated delayed fluorescence(TADF)molecule,PhNAI-PMSBA,bearing a 1,8-naphthalimide-acridine framework was designed by a doublesite long-axis extension strategy to actively control the dipole orientation.The horizontal ratio of emitting dipole orientation of PhNAI-PMSBA reaches 95%,substantially higher than that of isotropic emitters(67%).This unique feature is associated with the intrinsically horizontal molecular orientation of PhNAI-PMSBA and the good agreement between its transition dipole moment direction and molecular long axis.The PhNAI-PMSBA-based OLED achieves an ultrahigh optical outcoupling efficiency of 43.2%and thus affords one of the highest red electroluminescence with an external quantum efficiency of 22.3%and the Commission International de l’Eclairage 1931 coordinates at around(0.60,0.40).展开更多
Thermally activated delayed fluorescence(TADF) sensitized fluorescent organic light-emitting diodes(TSF-OLEDs) have shown great potential for the realization of high efficiency with low efficiency rolloff and good col...Thermally activated delayed fluorescence(TADF) sensitized fluorescent organic light-emitting diodes(TSF-OLEDs) have shown great potential for the realization of high efficiency with low efficiency rolloff and good color purity. However, the superior examples of TSF-OLEDs are still limited up to now.Herein, a trade-off strategy is presented for designing efficient TADF materials and achieving highperformance TSF-OLEDs via the construction of a new type of triazolotriazine(TAZTRZ) acceptor. The enhanced electron-withdrawing ability of TAZTRZ acceptor, fused by triazine(TRZ) and triazole(TAZ)together, enables TADF luminogens with small singlet-triplet energy gap(ΔE_(ST)) values. Meanwhile, the increased planarity from the TRZ-phenyl linkage(6:6 system) to the TAZ-phenyl linkage(5:6 system)can compensate the decrease of oscillator strength(f) while lowing ΔE_(ST), thus achieving a trade-off between small ΔE_(ST) and high f. As a result, the related TSF-OLED achieved an extremely low turn-on voltage of 2.1 V, an outstanding maximum external quantum efficiency(EQEmax) of 23.7% with small efficiency roll-off(EQE1000 of 23.2%;EQE5000 of 20.6%) and an impressively high maximum power efficiency of 82.1 lm W^(-1), which represents the state-of-the-art performance for yellow TSF-OLEDs.展开更多
基金the National Natural Science Foundation of China(51873158,51573141,91833304 and 91433201)the National Key R&D Program of China(2016YFB0401002)+4 种基金Shenzhen Science and Technolgy Program(KQTD20170330110107046 and JCYJ20190808151209557)the Key Technological Innovation Program of Hubei Province(2018AAA013)the Natural Science Foundation for Distinguished Young Scholars of Hubei Province(2017CFA033)the support from the Ministry of Science and Technology of Taiwan(MOST 107-2221-E-002-160-MY3 and 108-2221-E-002-148-MY3)the post-doctoral fellowship from the Ministry of Education(MOE)of Taiwan。
文摘How to control the dipole orientation of organic emitters is a challenge in the field of organic light-emitting diodes(OLEDs).Herein,a linear thermally activated delayed fluorescence(TADF)molecule,PhNAI-PMSBA,bearing a 1,8-naphthalimide-acridine framework was designed by a doublesite long-axis extension strategy to actively control the dipole orientation.The horizontal ratio of emitting dipole orientation of PhNAI-PMSBA reaches 95%,substantially higher than that of isotropic emitters(67%).This unique feature is associated with the intrinsically horizontal molecular orientation of PhNAI-PMSBA and the good agreement between its transition dipole moment direction and molecular long axis.The PhNAI-PMSBA-based OLED achieves an ultrahigh optical outcoupling efficiency of 43.2%and thus affords one of the highest red electroluminescence with an external quantum efficiency of 22.3%and the Commission International de l’Eclairage 1931 coordinates at around(0.60,0.40).
基金This work was supported by the National Natural Science Foundation of China(21432005)the Fundamental Research Funds for the Central Universities and the Comprehensive Training Platform Specialized Laboratory,College of Chemistry,Sichuan University。
文摘Thermally activated delayed fluorescence(TADF) sensitized fluorescent organic light-emitting diodes(TSF-OLEDs) have shown great potential for the realization of high efficiency with low efficiency rolloff and good color purity. However, the superior examples of TSF-OLEDs are still limited up to now.Herein, a trade-off strategy is presented for designing efficient TADF materials and achieving highperformance TSF-OLEDs via the construction of a new type of triazolotriazine(TAZTRZ) acceptor. The enhanced electron-withdrawing ability of TAZTRZ acceptor, fused by triazine(TRZ) and triazole(TAZ)together, enables TADF luminogens with small singlet-triplet energy gap(ΔE_(ST)) values. Meanwhile, the increased planarity from the TRZ-phenyl linkage(6:6 system) to the TAZ-phenyl linkage(5:6 system)can compensate the decrease of oscillator strength(f) while lowing ΔE_(ST), thus achieving a trade-off between small ΔE_(ST) and high f. As a result, the related TSF-OLED achieved an extremely low turn-on voltage of 2.1 V, an outstanding maximum external quantum efficiency(EQEmax) of 23.7% with small efficiency roll-off(EQE1000 of 23.2%;EQE5000 of 20.6%) and an impressively high maximum power efficiency of 82.1 lm W^(-1), which represents the state-of-the-art performance for yellow TSF-OLEDs.