In this paper, we study the phenomenon of stochastic resonance (SR) in a periodically driven bistable system with correlations between multiplicative and additive white noise terms when there, are two different kind...In this paper, we study the phenomenon of stochastic resonance (SR) in a periodically driven bistable system with correlations between multiplicative and additive white noise terms when there, are two different kinds of time delays existed in the deterministic and fluctuating forces, respectively. Using the small time delay approximation and the theory of signal-to-noise ratio (SNR) in the adiabatic limit, the expression of SNR is obtained. The effects of the delay time T in the deterministic force, and the delay time 8 in the fluctuating force on SNR are discussed. Based on the numerical computation, it is found that: (i) There appears a reentrant transition between one peak and two peaks and then to one peak again in the curve of SNR when the value of the time delay θ is increased. (ii) SR can be realized by tuning the time delay T or 8 with fixed noise, i.e., delay-induced stochastic resonance (DSR) exists.展开更多
This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a ...This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems.展开更多
基金Supported by the Natural Science Foundation of Yunnan Province under Grant No.08C0235
文摘In this paper, we study the phenomenon of stochastic resonance (SR) in a periodically driven bistable system with correlations between multiplicative and additive white noise terms when there, are two different kinds of time delays existed in the deterministic and fluctuating forces, respectively. Using the small time delay approximation and the theory of signal-to-noise ratio (SNR) in the adiabatic limit, the expression of SNR is obtained. The effects of the delay time T in the deterministic force, and the delay time 8 in the fluctuating force on SNR are discussed. Based on the numerical computation, it is found that: (i) There appears a reentrant transition between one peak and two peaks and then to one peak again in the curve of SNR when the value of the time delay θ is increased. (ii) SR can be realized by tuning the time delay T or 8 with fixed noise, i.e., delay-induced stochastic resonance (DSR) exists.
基金Supported by the National Natural Science Foundation of China under Grant No. 60674059
文摘This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve timedelayed generalized synchronization (TDGS). These two theorems uncover the genera/forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems.