Ignition delay of syngas is an important factor that affects stable operation of combustor and adding diluents to syngas can reduce NO_x emission.This paper used H_2O,CO_2 and N_2 as diluents and calculated ignition d...Ignition delay of syngas is an important factor that affects stable operation of combustor and adding diluents to syngas can reduce NO_x emission.This paper used H_2O,CO_2 and N_2 as diluents and calculated ignition delay of syngas in temperature range of 900-1400 K and at pressures of 10 and 30 atm respectively.In high temperature range,comparing with N_2 dilution,adding H_2O and CO_2 can significantly inhibit autoignition of syngas because they have higher collision efficiencies in reaction H + O_2(+ M) = HO_2(+ M).As for low temperature conditions,adding H_2O can increase reactivity of syngas,especially under high pressure,because of its high collision efficiency in reaction H_2O_2(+ M) = 2OH(+ M).Comparing with different dilution rates shows that for syngas and operating conditions in this paper,adding N_2 mainly influences temperature rising process of syngas combustion,thus inhibiting reactivity of syngas.In addition,this paper calculated ignition delay of syngas at different equivalence ratios(φ= 0.5,1.0).Higher equivalence ratio(φ≤1) means that less air(especially N_2) needs to be heated,thus promoting ignition of syngas,展开更多
基金Supported by National High Technology Research and Development Program of China(2009AA05Z310)
文摘Ignition delay of syngas is an important factor that affects stable operation of combustor and adding diluents to syngas can reduce NO_x emission.This paper used H_2O,CO_2 and N_2 as diluents and calculated ignition delay of syngas in temperature range of 900-1400 K and at pressures of 10 and 30 atm respectively.In high temperature range,comparing with N_2 dilution,adding H_2O and CO_2 can significantly inhibit autoignition of syngas because they have higher collision efficiencies in reaction H + O_2(+ M) = HO_2(+ M).As for low temperature conditions,adding H_2O can increase reactivity of syngas,especially under high pressure,because of its high collision efficiency in reaction H_2O_2(+ M) = 2OH(+ M).Comparing with different dilution rates shows that for syngas and operating conditions in this paper,adding N_2 mainly influences temperature rising process of syngas combustion,thus inhibiting reactivity of syngas.In addition,this paper calculated ignition delay of syngas at different equivalence ratios(φ= 0.5,1.0).Higher equivalence ratio(φ≤1) means that less air(especially N_2) needs to be heated,thus promoting ignition of syngas,