The Made in China 2025 initiative will require full automation in all sectors, from customers to production. This will result in great challenges to manufacturing systems in all sectors. In the future of manufacturing...The Made in China 2025 initiative will require full automation in all sectors, from customers to production. This will result in great challenges to manufacturing systems in all sectors. In the future of manufacturing, all devices and systems should have sensing and basic intelligence capabilities for control and adaptation. In this study, after discussing multiscale dynamics of the modern manufacturing system, a five-layer functional structure is proposed for uncertainties processing. Multiscale dynamics include: multi-time scale, spacetime scale, and multi-level dynamics. Control action will differ at different scales, with more design being required at both fast and slow time scales. More quantitative action is required in low-level operations, while more qualitative action is needed regarding high-level supervision. Intelligent manufacturing systems should have the capabilities of flexibility, adaptability, and intelligence. These capabilities will require the control action to be distributed and integrated with different approaches, including smart sensing, optimal design, and intelligent learning. Finally, a typical jet dispensing system is taken as a real-world example for multiscale modeling and control.展开更多
Modeling of welding process by robotic vision is basically a theoretical problem, means mainly on physical problem, and also technological problem. To obtain a good model of welding process by robotic vision, theoreti...Modeling of welding process by robotic vision is basically a theoretical problem, means mainly on physical problem, and also technological problem. To obtain a good model of welding process by robotic vision, theoretical researches are required but also constant experimental researches of several welding processes. Until today researches of welding processes has been based on empirical and detailed experimentation. This paper presents welding process by robotic and automation points of view with application of new technologies. Welding robotic system has been designed with possibility to control and inspect this process. Parameters that should be controlled during the process have been identified to reach desired quality. Figure of control system of welding process by robotic vision is given in this paper.展开更多
Carbonizing columns are the key equipment of soda production. A model for on-line control of the carbonizing columns has been developed and a control structure has been presented.
in recent years, as the project of our country is increasing, investment growth, put forward new challenges to investment in construction projects. Research from the research status of investment in construction, the ...in recent years, as the project of our country is increasing, investment growth, put forward new challenges to investment in construction projects. Research from the research status of investment in construction, the implementation process in accordance with the construction project, followed by analysis of the construction project investment the currently existing problems, and puts forward the implementation of the project the whole process as the main line, to scientific decision-making, rational design, bidding, construction control standard and completion of review strategies as the core.展开更多
The utilization of liquid–liquid extraction for the separation of 2-phenylbutyric acid(2-PBA) enantiomers was proposed. Factors affecting the extract process were investigated, including organic solvents, β-cyclod...The utilization of liquid–liquid extraction for the separation of 2-phenylbutyric acid(2-PBA) enantiomers was proposed. Factors affecting the extract process were investigated, including organic solvents, β-cyclodextrin derivatives, cyclodextrin concentration, p H and temperature. A model was proposed to describe the separation process based on the homogeneous phase reaction mechanism. Important parameters of this model were determined experimentally. The physical distribution coefficients for molecular and ionic 2-PBA were0.129 and 7.455, respectively. The equilibrium constants of the complexation reactions were 89.36 and36.78 L·mol^-1 for(+)-and(-)-2-PBA, respectively. The model was verified by experiments and proved to be an excellent means to optimize the separation system. Through modeling prediction and experiment, the best conditions(e.g., pH value of 3.00, extractant concentration of 0.1 mol·L^-1, temperature of 5.0 ℃) were acquired. Under this condition, the maximum enantioselectivity(2.096) was obtained.展开更多
This paper presents the reason for instability of underground construction. In order to know failure mechanism during the whole construction process, a research framework of multi-scale based on experiments and numeri...This paper presents the reason for instability of underground construction. In order to know failure mechanism during the whole construction process, a research framework of multi-scale based on experiments and numerical analysis is established. Some promising aspects in the topics of stability control are also given in the paper.展开更多
Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal ve...Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal velocity function V^opt, which is considered as the desired velocity function for train movement control under different control conditions. In order to test the proposed model, we simulate and analyze the trajectories of train movements, moreover, discuss the relationship curves between the train allowable velocity and the site of objective point in detail. Analysis results indicate that the proposed model can well capture some realistic futures of train movement control.展开更多
基金partially supported by a GRF project from RGC of Hong Kong China (City U: 11207714)+2 种基金a SRG grant from City University of Hong Kong China (7004909)a National Basic Research Program of China (2011CB013104)
文摘The Made in China 2025 initiative will require full automation in all sectors, from customers to production. This will result in great challenges to manufacturing systems in all sectors. In the future of manufacturing, all devices and systems should have sensing and basic intelligence capabilities for control and adaptation. In this study, after discussing multiscale dynamics of the modern manufacturing system, a five-layer functional structure is proposed for uncertainties processing. Multiscale dynamics include: multi-time scale, spacetime scale, and multi-level dynamics. Control action will differ at different scales, with more design being required at both fast and slow time scales. More quantitative action is required in low-level operations, while more qualitative action is needed regarding high-level supervision. Intelligent manufacturing systems should have the capabilities of flexibility, adaptability, and intelligence. These capabilities will require the control action to be distributed and integrated with different approaches, including smart sensing, optimal design, and intelligent learning. Finally, a typical jet dispensing system is taken as a real-world example for multiscale modeling and control.
文摘Modeling of welding process by robotic vision is basically a theoretical problem, means mainly on physical problem, and also technological problem. To obtain a good model of welding process by robotic vision, theoretical researches are required but also constant experimental researches of several welding processes. Until today researches of welding processes has been based on empirical and detailed experimentation. This paper presents welding process by robotic and automation points of view with application of new technologies. Welding robotic system has been designed with possibility to control and inspect this process. Parameters that should be controlled during the process have been identified to reach desired quality. Figure of control system of welding process by robotic vision is given in this paper.
文摘Carbonizing columns are the key equipment of soda production. A model for on-line control of the carbonizing columns has been developed and a control structure has been presented.
文摘in recent years, as the project of our country is increasing, investment growth, put forward new challenges to investment in construction projects. Research from the research status of investment in construction, the implementation process in accordance with the construction project, followed by analysis of the construction project investment the currently existing problems, and puts forward the implementation of the project the whole process as the main line, to scientific decision-making, rational design, bidding, construction control standard and completion of review strategies as the core.
基金Supported by the National Basic Research Program of China(2014CB260407)
文摘The utilization of liquid–liquid extraction for the separation of 2-phenylbutyric acid(2-PBA) enantiomers was proposed. Factors affecting the extract process were investigated, including organic solvents, β-cyclodextrin derivatives, cyclodextrin concentration, p H and temperature. A model was proposed to describe the separation process based on the homogeneous phase reaction mechanism. Important parameters of this model were determined experimentally. The physical distribution coefficients for molecular and ionic 2-PBA were0.129 and 7.455, respectively. The equilibrium constants of the complexation reactions were 89.36 and36.78 L·mol^-1 for(+)-and(-)-2-PBA, respectively. The model was verified by experiments and proved to be an excellent means to optimize the separation system. Through modeling prediction and experiment, the best conditions(e.g., pH value of 3.00, extractant concentration of 0.1 mol·L^-1, temperature of 5.0 ℃) were acquired. Under this condition, the maximum enantioselectivity(2.096) was obtained.
基金National Basic Research Program of China(No.2007CB714001)National Natural Science Foundation of China(No.50878193)New century Excellent Talents in University(NCET-08-0491)
文摘This paper presents the reason for instability of underground construction. In order to know failure mechanism during the whole construction process, a research framework of multi-scale based on experiments and numerical analysis is established. Some promising aspects in the topics of stability control are also given in the paper.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60634010 and 60776829the State Key Laboratory of Rail Traffic Control and Safety (Contract No.RCS2008ZZ001 and RCS2010ZZ001),Beijing Jiaotong University
文摘Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal velocity function V^opt, which is considered as the desired velocity function for train movement control under different control conditions. In order to test the proposed model, we simulate and analyze the trajectories of train movements, moreover, discuss the relationship curves between the train allowable velocity and the site of objective point in detail. Analysis results indicate that the proposed model can well capture some realistic futures of train movement control.