Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborh...Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.展开更多
A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algo...A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality.展开更多
Objective: The purpose of this study was to evaluate the performance of the phase-binning algorithm and amplitude-binning algorithm for four-dimensional computed tomography(4DCT) reconstruction in lung cancer radiatio...Objective: The purpose of this study was to evaluate the performance of the phase-binning algorithm and amplitude-binning algorithm for four-dimensional computed tomography(4DCT) reconstruction in lung cancer radiation therapy. Methods: Quasar phantom data were used for evaluation. A phantom of known geometry was mounted on a four-dimensional(4D) motion platform programmed with twelve respiratory waves(twelve lung patients trajectories) and scanned with a Philips Brilliance Big bore 16-slice CT simulator. The 4DCT images were reconstructed using both phase- and amplitude-binning algorithms. Internal target volumes(ITVs) of the phase- and amplitude-binned image sets were compared by evaluation of shape and volume distortions. Results: The phantom experiments illustrated that, as expected, maximum inhalation occurred at the 0% amplitude and maximum exhalation occurred at the 50% amplitude of the amplitude-binned 4DCT image sets. The amplitude-binned algorithm rendered smaller ITV than the phase-binning algorithm. Conclusion: The amplitude-binning algorithm for 4DCT reconstruction may have a potential advantage in reducing the margin and protecting normal lung tissue from unnecessary irradiation.展开更多
文摘Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.
文摘A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality.
文摘Objective: The purpose of this study was to evaluate the performance of the phase-binning algorithm and amplitude-binning algorithm for four-dimensional computed tomography(4DCT) reconstruction in lung cancer radiation therapy. Methods: Quasar phantom data were used for evaluation. A phantom of known geometry was mounted on a four-dimensional(4D) motion platform programmed with twelve respiratory waves(twelve lung patients trajectories) and scanned with a Philips Brilliance Big bore 16-slice CT simulator. The 4DCT images were reconstructed using both phase- and amplitude-binning algorithms. Internal target volumes(ITVs) of the phase- and amplitude-binned image sets were compared by evaluation of shape and volume distortions. Results: The phantom experiments illustrated that, as expected, maximum inhalation occurred at the 0% amplitude and maximum exhalation occurred at the 50% amplitude of the amplitude-binned 4DCT image sets. The amplitude-binned algorithm rendered smaller ITV than the phase-binning algorithm. Conclusion: The amplitude-binning algorithm for 4DCT reconstruction may have a potential advantage in reducing the margin and protecting normal lung tissue from unnecessary irradiation.