The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
In emergence of design, it is undoubted to be informed from nature for how things get done. But in architecture, the students are not used to start up with biological investigation. Instead of analogues, it is permitt...In emergence of design, it is undoubted to be informed from nature for how things get done. But in architecture, the students are not used to start up with biological investigation. Instead of analogues, it is permitted to pursue an evolvability systematics for built emerge. The systematics relies upon the key assumptions of Kirschner who sought the characteristics of biological evolution. For an integrated design thinking of an architectural mind, this is a methodological study, which strategically adapts living forms' evolvability capacity to built-forms' structural emergence. The study outlines the evolution strategy with experimental studios of building and design. The preceding systematic is taught in distinguished courses. It is purposed to build an easy-to-apply framework for how to generate novel structures and how the spatial structure units are organized to emerge with an imagined nature as novel tectonic model. Besides, building up structural thinking into the consilience of evolution strategy, the study is also distinguished for understanding the value system of architectural mind to diagnose the genuine character of inventive built form. Strategy constructs processes. Thinking strategy concludes by the evolvability directives of studio assignments and they are given as flow-charts and project models.展开更多
The target of achieving high energy efficiency standard in order to comply with the EU Directives is leading to remarkable efforts to improve the performance of the building envelope. Excellent thermal insulation and ...The target of achieving high energy efficiency standard in order to comply with the EU Directives is leading to remarkable efforts to improve the performance of the building envelope. Excellent thermal insulation and airtight sealing of leakages are of the utmost importance to fulfil the expected targets. Unfortunately, airtightness produces the negative effect of increasing the indoor concentration of air pollutants like radon. Despite the seriousness of the problem is generally misconceived, long-term exposition to radon is acknowledged to be the second cause of lung cancer after smoke. The paper outlines the implications for the building sector and focuses on design and preventive criteria as well as on mitigation and remedial techniques.展开更多
We present a computational framework for the study of cardiac motion.The bio-mechanical model captures the passive and active properties of the cardiac tissue as well as the fiber architecture.We focus on the analysis...We present a computational framework for the study of cardiac motion.The bio-mechanical model captures the passive and active properties of the cardiac tissue as well as the fiber architecture.We focus on the analysis of deformations of a beating left ventricle(LV),comparing numerical simulations with real data acquired by echocardiography.The goal is to determine the clinical relevance of the LV strains pattern and to investigate the relationships between that pattern and the arrangement of myocardial fibers.The proposed framework could in principle be used for a wide range of clinical applications.展开更多
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
文摘In emergence of design, it is undoubted to be informed from nature for how things get done. But in architecture, the students are not used to start up with biological investigation. Instead of analogues, it is permitted to pursue an evolvability systematics for built emerge. The systematics relies upon the key assumptions of Kirschner who sought the characteristics of biological evolution. For an integrated design thinking of an architectural mind, this is a methodological study, which strategically adapts living forms' evolvability capacity to built-forms' structural emergence. The study outlines the evolution strategy with experimental studios of building and design. The preceding systematic is taught in distinguished courses. It is purposed to build an easy-to-apply framework for how to generate novel structures and how the spatial structure units are organized to emerge with an imagined nature as novel tectonic model. Besides, building up structural thinking into the consilience of evolution strategy, the study is also distinguished for understanding the value system of architectural mind to diagnose the genuine character of inventive built form. Strategy constructs processes. Thinking strategy concludes by the evolvability directives of studio assignments and they are given as flow-charts and project models.
文摘The target of achieving high energy efficiency standard in order to comply with the EU Directives is leading to remarkable efforts to improve the performance of the building envelope. Excellent thermal insulation and airtight sealing of leakages are of the utmost importance to fulfil the expected targets. Unfortunately, airtightness produces the negative effect of increasing the indoor concentration of air pollutants like radon. Despite the seriousness of the problem is generally misconceived, long-term exposition to radon is acknowledged to be the second cause of lung cancer after smoke. The paper outlines the implications for the building sector and focuses on design and preventive criteria as well as on mitigation and remedial techniques.
基金the Italian Minister for Education,Research,and University(Grant No.2017KL4EF3)“Sapienza”Universiti di Roma(Grant No.RM120172A77FB346)。
文摘We present a computational framework for the study of cardiac motion.The bio-mechanical model captures the passive and active properties of the cardiac tissue as well as the fiber architecture.We focus on the analysis of deformations of a beating left ventricle(LV),comparing numerical simulations with real data acquired by echocardiography.The goal is to determine the clinical relevance of the LV strains pattern and to investigate the relationships between that pattern and the arrangement of myocardial fibers.The proposed framework could in principle be used for a wide range of clinical applications.