The present paper proposes the impact of the air temperature on electricity demand as expected. It is clear that the annual maximum load is recorded versus the years starting by the year 2009 up to 2012. At present, t...The present paper proposes the impact of the air temperature on electricity demand as expected. It is clear that the annual maximum load is recorded versus the years starting by the year 2009 up to 2012. At present, the graph fitting technique is applied with some mathematical and computational tools based on the actual values of the years 2009 up to 2012 considering the lower values, the higher values and the average values of the annual maximum loads for Kingdom of Bahrain. For the three scenarios, the models are obtained by curve fitting technique. As well, the model of actual loads is obtained finally which has mostly the closest values obtained.展开更多
Despite many studies on land degradation in the Highlands of Northern Ethiopia, quantitative information regarding long-term changes in land use/cover(LUC) is rare. Hence, this study aims to investigate the LUC change...Despite many studies on land degradation in the Highlands of Northern Ethiopia, quantitative information regarding long-term changes in land use/cover(LUC) is rare. Hence, this study aims to investigate the LUC changes in the Geba catchment(5142 km2), Northern Ethiopia, over 80 years(1935–2014). Aerial photographs(APs) of the 1930 s and Google Earth(GE) images(2014) were used. The point-count technique was utilized by overlaying a grid on APs and GE images. The occurrence of cropland, forest, grassland, shrubland, bare land, built-up areas and water body was counted to compute their fractions. A multivariate adaptive regression spline was applied to identify the explanatory factors of LUC and to create fractional maps of LUC. The results indicate significant changes of most types, except for forest and cropland. In the 1930 s, shrubland(48%) was dominant, followed by cropland(39%). The fraction of cropland in 2014(42%) remained approximately the same as in the 1930 s, while shrubland significantly dropped to 37%. Forests shrank further from a meagre 6.3% in the 1930 s to 2.3% in 2014. High overall accuracies(93% and 83%) and strong Kappa coefficients(89% and 72%) for point counts and fractional maps respectively indicate the validity of the techniques used for LUC mapping.展开更多
文摘The present paper proposes the impact of the air temperature on electricity demand as expected. It is clear that the annual maximum load is recorded versus the years starting by the year 2009 up to 2012. At present, the graph fitting technique is applied with some mathematical and computational tools based on the actual values of the years 2009 up to 2012 considering the lower values, the higher values and the average values of the annual maximum loads for Kingdom of Bahrain. For the three scenarios, the models are obtained by curve fitting technique. As well, the model of actual loads is obtained finally which has mostly the closest values obtained.
基金a scholarship of the Special Research Fund (BOF) obtained from Ghent University, Belgiumpartially covered by the RIP-MU (VLIR, Belgium) project
文摘Despite many studies on land degradation in the Highlands of Northern Ethiopia, quantitative information regarding long-term changes in land use/cover(LUC) is rare. Hence, this study aims to investigate the LUC changes in the Geba catchment(5142 km2), Northern Ethiopia, over 80 years(1935–2014). Aerial photographs(APs) of the 1930 s and Google Earth(GE) images(2014) were used. The point-count technique was utilized by overlaying a grid on APs and GE images. The occurrence of cropland, forest, grassland, shrubland, bare land, built-up areas and water body was counted to compute their fractions. A multivariate adaptive regression spline was applied to identify the explanatory factors of LUC and to create fractional maps of LUC. The results indicate significant changes of most types, except for forest and cropland. In the 1930 s, shrubland(48%) was dominant, followed by cropland(39%). The fraction of cropland in 2014(42%) remained approximately the same as in the 1930 s, while shrubland significantly dropped to 37%. Forests shrank further from a meagre 6.3% in the 1930 s to 2.3% in 2014. High overall accuracies(93% and 83%) and strong Kappa coefficients(89% and 72%) for point counts and fractional maps respectively indicate the validity of the techniques used for LUC mapping.