The parametric part assembly generation method is presented. Based on the parametric part generated by means of constructive-element, through interactively inputting the relationships of the location and the assembly,...The parametric part assembly generation method is presented. Based on the parametric part generated by means of constructive-element, through interactively inputting the relationships of the location and the assembly, and by compiling operations like movement and rotation, the assembly drawing is created so as to implement the occurrence of the parameterizations of the assembly and the part drawing. The data structure of the assembly part and the key technologies of hidden line removal in the implementation of assembly process, etc. , are described in detail.展开更多
A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "F...A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength.展开更多
Spontaneous combustion(sponcom) is one of the issues of concern with the blasting gallery(BG) method of coal mining and has the potential to cause fires, and impact on production and safety, greenhouse gas(GHG) emissi...Spontaneous combustion(sponcom) is one of the issues of concern with the blasting gallery(BG) method of coal mining and has the potential to cause fires, and impact on production and safety, greenhouse gas(GHG) emissions and huge costs involved in controlling the aftermath situations. Some of the research attempts made to prevent and control coal mine fires and spontaneous combustion in thick seams worked with bord and pillar mining methods are presented in this paper. In the study, computational fluid dynamics(CFD) modelling techniques were used to simulate and assess the effects of various mining methods, layouts, designs, and different operational and ventilation parameters on the flow of goaf gases in BG panels. A wide range of parametric studies were conducted to develop proactive strategies to control and prevent ingress of oxygen into the goaf area preventing spontaneous combustion and mine fires.展开更多
Industrial ecological system is a sustainable mode of modern industry development. Industrial symbiosis, a sub-field of industrial ecology, engages traditionally separate industries in a collective approach, involving...Industrial ecological system is a sustainable mode of modern industry development. Industrial symbiosis, a sub-field of industrial ecology, engages traditionally separate industries in a collective approach, involving exchange of materials, energy, water, and/or by-products, to enhance competitive ability and environmental performance. To construct a symbiosis analysis method, this article employs a number of parameters embodying information about materials, energy and economics as the main essential parameters in system analysis and introduces symbiosis profit and symbiotic consumption elements as the economic indicators. A modeling and simulation program is designed using the agent-based modeling approach to simulate the evolvement of a hypothetical coal-based industrial system and the change of symbiosis conditions in the process of construction is examined. The simulation program built using the Swarm library, which is a freely available multi-agent simulation package, provides a useful demonstration for the symbiosis analysis method.展开更多
A moving-mass control method is introduced to stratospheric airship for its special working condition of low atmospheric density and low speed.The dynamic equation of airship is derived by using the Newton-Euler metho...A moving-mass control method is introduced to stratospheric airship for its special working condition of low atmospheric density and low speed.The dynamic equation of airship is derived by using the Newton-Euler method and the mechanism of attitude control by moving masses is studied.Then the passive gliding of airship by the moving masses is given based on the theory of glider,and attitude control capability between moving mass and elevator is compared at different airspeed.Analysis results show that the motion of masses changes the gravity center of the airship system,which makes the inertia tensor and the gravity moment vary.Meanwhile,the aerodynamic angles are generated,which results in the change of aerodynamic moment.Control efficiency of moving masses is independent of airspeed.Thus the moving-mass control has the advantage over the aerodynamic surfaces at low airspeed.展开更多
In the process of numerical control machining simulation,the workpiece surface is usually described with the uniform triangular mesh model.To alleviate the contradiction between the simulation speed and accuracy in th...In the process of numerical control machining simulation,the workpiece surface is usually described with the uniform triangular mesh model.To alleviate the contradiction between the simulation speed and accuracy in this model,two improved methods,i.e.,the local refinement triangular mesh modeling method and the adaptive triangular mesh modeling method were presented.The simulation results show that when the final shape of the workpiece is known and its mathematic representation is simple,the local refinement triangular mesh modeling method is preferred;when the final shape of the workpiece is unknown and its mathematic description is complicated,the adaptive triangular mesh modeling method is more suitable.The experimental results show that both methods are more targeted and practical and can meet the requirements of real-time and precision in simulation.展开更多
The present situation of the mathematics teaching in higher vocational colleges is not optimistic. In the new education system, it is an urgent problem for the mathematics teachers in higher vocational colleges to bri...The present situation of the mathematics teaching in higher vocational colleges is not optimistic. In the new education system, it is an urgent problem for the mathematics teachers in higher vocational colleges to bring forth new ideas for the teaching methods, improve the students' interest in learning, and train the application-oriented talented personnel needed by the society. MATLAB software package can help set up a bridge and link for the mathematics teaching and the practical application. Its powerful numerical calculation ability can quickly solve all kinds of calculation problems, so that the basic thinking methods are more closely focused in mathematics teaching and also more conditions are created for mathematics teaching to combine the actual major conditions and life conditions. In this paper, the related problems in the implementation of mathematical modeling software MATLAB and model in higher vocational colleges are discussed.展开更多
To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they ...To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.展开更多
Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to con...Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to confirm Jacobian matrix reflecting relations of all joints,nodes,and generalized coordinates,namely,relations of second-order and corresponding third-order conversion tensors. For complex motion relations of components in a parallel robot,it gives second-order and third-order conversion tensors of dynamic equations for the 6-HTRT parallel robot based on equivalent integrated finite element method. The method is suitable for the typical robots whose positions of work space and sizes of mechanism are different. The solving course of the method is simple and convenient,so the method lays the foundation of dynamic analysis for robots.展开更多
As the smart grid concepts are emphasized lately, the need to modernize the power engineering education is also well recognized. This paper presents a set of newly developed modeling, simulation and testing tools aime...As the smart grid concepts are emphasized lately, the need to modernize the power engineering education is also well recognized. This paper presents a set of newly developed modeling, simulation and testing tools aimed at better understanding of the design concept and related applications for protective relaying and substation automation solutions for the smart grid. Since the smart grid applications require integration of data from multiple IEDs (intelligent electronic devices), understanding properties of each IED type in detail, as well as their responses to the power system events is needed. In addition, understanding the communication requirements to perform data integration is also important. To illustrate how the mentioned smart grid issues may be taught, the following advanced teaching approaches are presented: (1) Use of modeling and simulation means to better understand interaction between the relays and power system; (2) Use of IED test facilities to better understand performance of physical devices used for protection, monitoring and control; (3) Utilization of communication network modeling tools to simulate the communication network within SAS (substation automation system). Examples showing the use of proposed techniques for teaching the fundamentals and applications are presented. The examples demonstrate the adequacy and efficiency of the proposed techniques.展开更多
Integrated River Basin Management(IRBM)has been a long discussed way to sustainably manage water and land resources;yet,very few examples of effective IRBM are found because there is a lack of sufficient scientific su...Integrated River Basin Management(IRBM)has been a long discussed way to sustainably manage water and land resources;yet,very few examples of effective IRBM are found because there is a lack of sufficient scientific support,as well as institutional accommodation,to successfully implement it.This paper overviews the major challenges with IRBM,the promising scientific approaches for the implementation of IRBM,and the areas of needed research,with considerable issues and experiences from China.It is expected that novel research will draw together disparate disciplines into an integrated scientific framework,upon which better modeling tools,stakeholder involvement,and decision-making support can be built.Cutting-edge new technologies will bring ideas of IRBM forward to theory and finally to practice.The paper will prompt scientists to undertake research to fill in the gaps in the current IRBM knowledge base and provide practitioners guidance on how to incorporate scientifically based information within the IRBM decision process.展开更多
Three-dimensional(3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance(MR) images denoising for brain modeling reconstruction, and exploit a pract...Three-dimensional(3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance(MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.展开更多
Models of the evolution of learning often assume that learning leads to the best solution to any task, and disregard the details of the learning and decision-making process along with its potential pitfalls. These mod...Models of the evolution of learning often assume that learning leads to the best solution to any task, and disregard the details of the learning and decision-making process along with its potential pitfalls. These models therefore do not explain in- stances in the animal behavior literature in which learning leads to maladaptive behaviors. In recent years a growing number of theoretical studies use explicit models of learning mechanisms, offering a fresh perspective on the issue by revealing the dynam- ics of information acquisition and biases arising from it. These models have pointed out possible learning rules and their adaptive value, and shown that the value of learning may crucially depend on such factors as the layout of the physical environment to be learned, the structure of the payoffs offered by different alternatives, the risk of failure, characteristics of the learner and social interactions. This review considers the merits of explicit modeling in studying the evolution of learning, describes the kinds of results that can only be obtained from this modeling approach, and outlines directions for future research .展开更多
Regional gravity field modeling with high-precision and high-resolution is one of the most important scientific objectives in geodesy, and can provide fundamental information for geophysics, geodynamics, seismology, a...Regional gravity field modeling with high-precision and high-resolution is one of the most important scientific objectives in geodesy, and can provide fundamental information for geophysics, geodynamics, seismology, and mineral exploration. Rectangular harmonic analysis (RHA) is proposed for regional gravity field modeling in this paper. By solving the Laplace's equation of gravitational potential in local Cartesian coordinate system, the rectangular harmonic expansions of disturbing potential, gravity anomaly, gravity disturbance, geoid undulation and deflection of the vertical are derived, and so are the formula for signal degree variance and error degree variance of the rectangular harmonic coefficients (RHC). We also present the mathematical model and detailed algorithm for the solution of RHC using RHA from gravity observations. In order to reduce the edge effects caused by periodic continuation in RHA, we propose the strategy of extending the size of computation domain. The RHA-based modeling method is validated by conducting numerical experiments based on simulated ground and airborne gravity data that are generated from geopotential model EGM2008 and contaminated by Gauss white noise with standard deviation of 2 mGal. The accuracy of the 2.5'×2.5' geoid undulations computed from ground and airborne gravity data is 1 and 1.4 cm, respectively. The standard error of the gravity disturbances that downward continued from the flight height of 4 km to the geoid is only 3.1 reGal. Numerical results confirm that RHA is able to provide a reliable and accurate regional gravity field model, which may be a new option for the representation of the fine structure of regional gravity field.展开更多
In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (F...In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (FCC) substrate. The approach combines an atomistic treatment of the interfacial region with an elastic mechanics method description of the continuum region. The two regions are connected by a coupling region where nodes of the continuum region are refined to atoms of the atomistic region. Moreover, the elastic constants of FCC crystals are obtained directly from the Lennard-Jones potential to describe the elastic response characteristics of the continuum region, which ensures the consistency of material proprieties between atomistic and con- tinuum regions. The multiscale approach is examined by comparing it with the pure MD simulation, and the results indicate that the multiscale modeling approach agrees well with the MD method in studying the adhesive contact behaviors.展开更多
Hepatitis C virus (HCV) is a blood-borne infection that can lead to progressive liver fail- ure, cirrhosis, hepatocellular carcinoma and death. A deterministic mathematical model for assessing the impact of daily in...Hepatitis C virus (HCV) is a blood-borne infection that can lead to progressive liver fail- ure, cirrhosis, hepatocellular carcinoma and death. A deterministic mathematical model for assessing the impact of daily intravenous drug misuse on the transmission dynamics of HCV is presented and analyzed. A threshold quantity known as the reproductive number has been computed. Stability of the steady states has been investigated. The dynamical analysis reveals that the model has globally asymptotically stable steady states. The impact of daily intravenous drug misuse on the transmission dynamics of HCV has been discussed through the basic reproductive number and numerical simulations.展开更多
文摘The parametric part assembly generation method is presented. Based on the parametric part generated by means of constructive-element, through interactively inputting the relationships of the location and the assembly, and by compiling operations like movement and rotation, the assembly drawing is created so as to implement the occurrence of the parameterizations of the assembly and the part drawing. The data structure of the assembly part and the key technologies of hidden line removal in the implementation of assembly process, etc. , are described in detail.
基金Project(51208178)supported by the National Natural Science Foundation of ChinaProject(2012M520991)supported by China Postdoctoral Science Foundation
文摘A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength.
文摘Spontaneous combustion(sponcom) is one of the issues of concern with the blasting gallery(BG) method of coal mining and has the potential to cause fires, and impact on production and safety, greenhouse gas(GHG) emissions and huge costs involved in controlling the aftermath situations. Some of the research attempts made to prevent and control coal mine fires and spontaneous combustion in thick seams worked with bord and pillar mining methods are presented in this paper. In the study, computational fluid dynamics(CFD) modelling techniques were used to simulate and assess the effects of various mining methods, layouts, designs, and different operational and ventilation parameters on the flow of goaf gases in BG panels. A wide range of parametric studies were conducted to develop proactive strategies to control and prevent ingress of oxygen into the goaf area preventing spontaneous combustion and mine fires.
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(20936004)
文摘Industrial ecological system is a sustainable mode of modern industry development. Industrial symbiosis, a sub-field of industrial ecology, engages traditionally separate industries in a collective approach, involving exchange of materials, energy, water, and/or by-products, to enhance competitive ability and environmental performance. To construct a symbiosis analysis method, this article employs a number of parameters embodying information about materials, energy and economics as the main essential parameters in system analysis and introduces symbiosis profit and symbiotic consumption elements as the economic indicators. A modeling and simulation program is designed using the agent-based modeling approach to simulate the evolvement of a hypothetical coal-based industrial system and the change of symbiosis conditions in the process of construction is examined. The simulation program built using the Swarm library, which is a freely available multi-agent simulation package, provides a useful demonstration for the symbiosis analysis method.
基金Supported by the National Natural Science Foundation of China(No.61175074,11272205)
文摘A moving-mass control method is introduced to stratospheric airship for its special working condition of low atmospheric density and low speed.The dynamic equation of airship is derived by using the Newton-Euler method and the mechanism of attitude control by moving masses is studied.Then the passive gliding of airship by the moving masses is given based on the theory of glider,and attitude control capability between moving mass and elevator is compared at different airspeed.Analysis results show that the motion of masses changes the gravity center of the airship system,which makes the inertia tensor and the gravity moment vary.Meanwhile,the aerodynamic angles are generated,which results in the change of aerodynamic moment.Control efficiency of moving masses is independent of airspeed.Thus the moving-mass control has the advantage over the aerodynamic surfaces at low airspeed.
基金Project(60772089) supported by the National Natural Science Foundation of ChinaProject(20080440939) supported by the China Postdoctoral Science Foundation
文摘In the process of numerical control machining simulation,the workpiece surface is usually described with the uniform triangular mesh model.To alleviate the contradiction between the simulation speed and accuracy in this model,two improved methods,i.e.,the local refinement triangular mesh modeling method and the adaptive triangular mesh modeling method were presented.The simulation results show that when the final shape of the workpiece is known and its mathematic representation is simple,the local refinement triangular mesh modeling method is preferred;when the final shape of the workpiece is unknown and its mathematic description is complicated,the adaptive triangular mesh modeling method is more suitable.The experimental results show that both methods are more targeted and practical and can meet the requirements of real-time and precision in simulation.
文摘The present situation of the mathematics teaching in higher vocational colleges is not optimistic. In the new education system, it is an urgent problem for the mathematics teachers in higher vocational colleges to bring forth new ideas for the teaching methods, improve the students' interest in learning, and train the application-oriented talented personnel needed by the society. MATLAB software package can help set up a bridge and link for the mathematics teaching and the practical application. Its powerful numerical calculation ability can quickly solve all kinds of calculation problems, so that the basic thinking methods are more closely focused in mathematics teaching and also more conditions are created for mathematics teaching to combine the actual major conditions and life conditions. In this paper, the related problems in the implementation of mathematical modeling software MATLAB and model in higher vocational colleges are discussed.
基金Project(51175518)supported by the National Natural Science Foundation of China
文摘To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.
基金Innovation Fund of Harbin,China (No.2006RFQXG036)
文摘Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to confirm Jacobian matrix reflecting relations of all joints,nodes,and generalized coordinates,namely,relations of second-order and corresponding third-order conversion tensors. For complex motion relations of components in a parallel robot,it gives second-order and third-order conversion tensors of dynamic equations for the 6-HTRT parallel robot based on equivalent integrated finite element method. The method is suitable for the typical robots whose positions of work space and sizes of mechanism are different. The solving course of the method is simple and convenient,so the method lays the foundation of dynamic analysis for robots.
文摘As the smart grid concepts are emphasized lately, the need to modernize the power engineering education is also well recognized. This paper presents a set of newly developed modeling, simulation and testing tools aimed at better understanding of the design concept and related applications for protective relaying and substation automation solutions for the smart grid. Since the smart grid applications require integration of data from multiple IEDs (intelligent electronic devices), understanding properties of each IED type in detail, as well as their responses to the power system events is needed. In addition, understanding the communication requirements to perform data integration is also important. To illustrate how the mentioned smart grid issues may be taught, the following advanced teaching approaches are presented: (1) Use of modeling and simulation means to better understand interaction between the relays and power system; (2) Use of IED test facilities to better understand performance of physical devices used for protection, monitoring and control; (3) Utilization of communication network modeling tools to simulate the communication network within SAS (substation automation system). Examples showing the use of proposed techniques for teaching the fundamentals and applications are presented. The examples demonstrate the adequacy and efficiency of the proposed techniques.
基金supported by U.S.National Science Foundation(Grant No.CBET-0747276)
文摘Integrated River Basin Management(IRBM)has been a long discussed way to sustainably manage water and land resources;yet,very few examples of effective IRBM are found because there is a lack of sufficient scientific support,as well as institutional accommodation,to successfully implement it.This paper overviews the major challenges with IRBM,the promising scientific approaches for the implementation of IRBM,and the areas of needed research,with considerable issues and experiences from China.It is expected that novel research will draw together disparate disciplines into an integrated scientific framework,upon which better modeling tools,stakeholder involvement,and decision-making support can be built.Cutting-edge new technologies will bring ideas of IRBM forward to theory and finally to practice.The paper will prompt scientists to undertake research to fill in the gaps in the current IRBM knowledge base and provide practitioners guidance on how to incorporate scientifically based information within the IRBM decision process.
基金supported by the National Natural Science Foundation of China(No.61202169)the Tianjin Key Natural Science Foundation(No.13JCZDJC34600)+1 种基金the China Scholarship Council(CSC)Foundation(No.201308120010)the Training Plan of Tianjin University Innovation Team(No.TD12-5016)
文摘Three-dimensional(3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance(MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.
文摘Models of the evolution of learning often assume that learning leads to the best solution to any task, and disregard the details of the learning and decision-making process along with its potential pitfalls. These models therefore do not explain in- stances in the animal behavior literature in which learning leads to maladaptive behaviors. In recent years a growing number of theoretical studies use explicit models of learning mechanisms, offering a fresh perspective on the issue by revealing the dynam- ics of information acquisition and biases arising from it. These models have pointed out possible learning rules and their adaptive value, and shown that the value of learning may crucially depend on such factors as the layout of the physical environment to be learned, the structure of the payoffs offered by different alternatives, the risk of failure, characteristics of the learner and social interactions. This review considers the merits of explicit modeling in studying the evolution of learning, describes the kinds of results that can only be obtained from this modeling approach, and outlines directions for future research .
基金jointly supported by the National Basic Research Program of China (Grant No. 2013CB733301)the National Science and Technology Support Program of China (Grant No. 2012BAB16B01)+1 种基金the National Natural Science Foundation of China (Grant No. 41204008)the Basic Research Program of National Administration of Surveying, Mapping and Geoinformation of China
文摘Regional gravity field modeling with high-precision and high-resolution is one of the most important scientific objectives in geodesy, and can provide fundamental information for geophysics, geodynamics, seismology, and mineral exploration. Rectangular harmonic analysis (RHA) is proposed for regional gravity field modeling in this paper. By solving the Laplace's equation of gravitational potential in local Cartesian coordinate system, the rectangular harmonic expansions of disturbing potential, gravity anomaly, gravity disturbance, geoid undulation and deflection of the vertical are derived, and so are the formula for signal degree variance and error degree variance of the rectangular harmonic coefficients (RHC). We also present the mathematical model and detailed algorithm for the solution of RHC using RHA from gravity observations. In order to reduce the edge effects caused by periodic continuation in RHA, we propose the strategy of extending the size of computation domain. The RHA-based modeling method is validated by conducting numerical experiments based on simulated ground and airborne gravity data that are generated from geopotential model EGM2008 and contaminated by Gauss white noise with standard deviation of 2 mGal. The accuracy of the 2.5'×2.5' geoid undulations computed from ground and airborne gravity data is 1 and 1.4 cm, respectively. The standard error of the gravity disturbances that downward continued from the flight height of 4 km to the geoid is only 3.1 reGal. Numerical results confirm that RHA is able to provide a reliable and accurate regional gravity field model, which may be a new option for the representation of the fine structure of regional gravity field.
基金supported by the National Natural Science Foundation of China (Grant No. 10476019)the Fundamental Research Funds for the Central Universities (Grant No. JY10000904018)
文摘In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (FCC) substrate. The approach combines an atomistic treatment of the interfacial region with an elastic mechanics method description of the continuum region. The two regions are connected by a coupling region where nodes of the continuum region are refined to atoms of the atomistic region. Moreover, the elastic constants of FCC crystals are obtained directly from the Lennard-Jones potential to describe the elastic response characteristics of the continuum region, which ensures the consistency of material proprieties between atomistic and con- tinuum regions. The multiscale approach is examined by comparing it with the pure MD simulation, and the results indicate that the multiscale modeling approach agrees well with the MD method in studying the adhesive contact behaviors.
文摘Hepatitis C virus (HCV) is a blood-borne infection that can lead to progressive liver fail- ure, cirrhosis, hepatocellular carcinoma and death. A deterministic mathematical model for assessing the impact of daily intravenous drug misuse on the transmission dynamics of HCV is presented and analyzed. A threshold quantity known as the reproductive number has been computed. Stability of the steady states has been investigated. The dynamical analysis reveals that the model has globally asymptotically stable steady states. The impact of daily intravenous drug misuse on the transmission dynamics of HCV has been discussed through the basic reproductive number and numerical simulations.