期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
概念漂移数据流全工况预测模型研究
1
作者 丰升彬 《中文科技期刊数据库(全文版)工程技术》 2024年第2期0208-0211,共4页
数据流中概念漂移问题是数据驱动建模领域面临的一大挑战,近年来受到广泛的关注。本文提出一种应对数据流中概念漂移问题的自适应预测算法,采用聚类思想选择建模样本,并利用RBF神经网络建立对象全局非线性模型。实验结果表明该算法具有... 数据流中概念漂移问题是数据驱动建模领域面临的一大挑战,近年来受到广泛的关注。本文提出一种应对数据流中概念漂移问题的自适应预测算法,采用聚类思想选择建模样本,并利用RBF神经网络建立对象全局非线性模型。实验结果表明该算法具有较好的实时预测能力和自适应能力,同时相比已有的采用滑动窗技术的概念漂移算法能够更好地反映对象全工况范围的非线性关系。 展开更多
关键词 概念漂移 建模样本选择 全工况模型
下载PDF
Novel Active Learning Method for Speech Recognition 被引量:1
2
作者 Liu Gang Chen Wei Guo Jun 《China Communications》 SCIE CSCD 2010年第5期29-39,共11页
In speech recognition, acoustic modeling always requires tremendous transcribed samples, and the transcription becomes intensively time-consuming and costly. In order to aid this labor-intensive process, Active Learni... In speech recognition, acoustic modeling always requires tremendous transcribed samples, and the transcription becomes intensively time-consuming and costly. In order to aid this labor-intensive process, Active Learning (AL) is adopted for speech recognition, where only the most informative training samples are selected for manual annotation. In this paper, we propose a novel active learning method for Chinese acoustic modeling, the methods for initial training set selection based on Kullback-Leibler Divergence (KLD) and sample evaluation based on multi-level confusion networks are proposed and adopted in our active learning system, respectively. Our experiments show that our proposed method can achieve satisfying performances. 展开更多
关键词 active learning acoustic model speech recognition KLD confusion network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部