对建筑物进行建模与分析是智慧城市建设的重要任务之一。将城市中数量庞大的建筑物按功能分类,辅助认知城市内部空间结构,对政府部门开展人口估计,土地管理,城市规划等工作具有重要意义。本文以蕴含丰富语义信息的兴趣点(POI,Point of I...对建筑物进行建模与分析是智慧城市建设的重要任务之一。将城市中数量庞大的建筑物按功能分类,辅助认知城市内部空间结构,对政府部门开展人口估计,土地管理,城市规划等工作具有重要意义。本文以蕴含丰富语义信息的兴趣点(POI,Point of Interest)作为主要信息源,针对POI分布稀疏导致大量建筑物无法识别出功能的问题,改进了传统的城市功能区定量识别方法。该方法为建筑物内部及周边一定区域范围内的POI赋予反距离权重,通过计算不同类型POI的加权频数密度比例来识别建筑物功能类型。文中以北京市西四环中路附近5000多栋建筑物为例进行实验验证,实现了将目标区域内的建筑物按功能类型划分为居住、商业、公服和3种混合类型,识别率达93.04%,与人工判别的结果对比得出总体分类精度达91.18%。该方法采用易于获取的互联网POI数据,可以实现大范围建筑物功能类型的快速自动化识别,丰富了城市建筑模型语义属性,扩展了POI数据的应用范围。展开更多
文摘对建筑物进行建模与分析是智慧城市建设的重要任务之一。将城市中数量庞大的建筑物按功能分类,辅助认知城市内部空间结构,对政府部门开展人口估计,土地管理,城市规划等工作具有重要意义。本文以蕴含丰富语义信息的兴趣点(POI,Point of Interest)作为主要信息源,针对POI分布稀疏导致大量建筑物无法识别出功能的问题,改进了传统的城市功能区定量识别方法。该方法为建筑物内部及周边一定区域范围内的POI赋予反距离权重,通过计算不同类型POI的加权频数密度比例来识别建筑物功能类型。文中以北京市西四环中路附近5000多栋建筑物为例进行实验验证,实现了将目标区域内的建筑物按功能类型划分为居住、商业、公服和3种混合类型,识别率达93.04%,与人工判别的结果对比得出总体分类精度达91.18%。该方法采用易于获取的互联网POI数据,可以实现大范围建筑物功能类型的快速自动化识别,丰富了城市建筑模型语义属性,扩展了POI数据的应用范围。