This paper presents an experimental study on the behaviour of rendering mortars used to rehabilitate buildings subjected to rising damp and consequently affected by efflorescence. This study was initiated by the chara...This paper presents an experimental study on the behaviour of rendering mortars used to rehabilitate buildings subjected to rising damp and consequently affected by efflorescence. This study was initiated by the characterization, "in situ" and in laboratory, of rendering mortar used as walls coating of an old building affected by efflorescence. Temperature, superficial humidity, mortar water content and salts content were used as characterization tests. Taking into account the reconstitution of old building rendering mortar composition, four different proportions were proposed to simulate different mortars skeletons and porosities. The mortars binders were composed by cement and three additions, such as hydrated lime, artificial hydraulic lime and quicklime paste. The results of capillary water absorption, soluble salts content and permeability test on masonry panels allowed analyzing the performance of mortars compared to the susceptibility of water rise and formation of salts. From this analysis, it was possible to draw some practical recommendations for design coating repair mortar in buildings subject to the problem of rising damp.展开更多
文摘This paper presents an experimental study on the behaviour of rendering mortars used to rehabilitate buildings subjected to rising damp and consequently affected by efflorescence. This study was initiated by the characterization, "in situ" and in laboratory, of rendering mortar used as walls coating of an old building affected by efflorescence. Temperature, superficial humidity, mortar water content and salts content were used as characterization tests. Taking into account the reconstitution of old building rendering mortar composition, four different proportions were proposed to simulate different mortars skeletons and porosities. The mortars binders were composed by cement and three additions, such as hydrated lime, artificial hydraulic lime and quicklime paste. The results of capillary water absorption, soluble salts content and permeability test on masonry panels allowed analyzing the performance of mortars compared to the susceptibility of water rise and formation of salts. From this analysis, it was possible to draw some practical recommendations for design coating repair mortar in buildings subject to the problem of rising damp.