The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-s...The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice.展开更多
In order to ensure that a structure does not collapse when subjected to the action of strong ground motions, modern codes include prescriptions in order to guarantee the ductile behavior of the elements and of the who...In order to ensure that a structure does not collapse when subjected to the action of strong ground motions, modern codes include prescriptions in order to guarantee the ductile behavior of the elements and of the whole structure. Obviously, it would be of special importance for the designer to know during the design process the extent of damage that the structure will suffer under the seismic action specified by the design spectrum and also the probability of occurrence of different states of behavior. The incremental nonlinear static analysis procedure used in this paper allows formulating a new, simplified, seismic damage index and damage thresholds associated with five limit states. The seismic behavior of a set of regular reinforced concrete buildings designed according to the EC-2/EC-8 prescriptions for a high seismic hazard level is then studied using the proposed damage index and damage states. Fragility curves and damage probability matrices corresponding to the performance point are calculated for the studied buildings. The obtained results show that the collapse damage state is not reached in the buildings designed according to the prescriptions of EC-2/EC-8 and also that the damage does not exceed the irreparable damage limit state.展开更多
文摘The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice.
文摘In order to ensure that a structure does not collapse when subjected to the action of strong ground motions, modern codes include prescriptions in order to guarantee the ductile behavior of the elements and of the whole structure. Obviously, it would be of special importance for the designer to know during the design process the extent of damage that the structure will suffer under the seismic action specified by the design spectrum and also the probability of occurrence of different states of behavior. The incremental nonlinear static analysis procedure used in this paper allows formulating a new, simplified, seismic damage index and damage thresholds associated with five limit states. The seismic behavior of a set of regular reinforced concrete buildings designed according to the EC-2/EC-8 prescriptions for a high seismic hazard level is then studied using the proposed damage index and damage states. Fragility curves and damage probability matrices corresponding to the performance point are calculated for the studied buildings. The obtained results show that the collapse damage state is not reached in the buildings designed according to the prescriptions of EC-2/EC-8 and also that the damage does not exceed the irreparable damage limit state.