The particle size distribution of rockfill is studied by using granular mechanics, mesomechanics and probability statistics to reveal the relationship of the distribution of particle size to that of the potential ener...The particle size distribution of rockfill is studied by using granular mechanics, mesomechanics and probability statistics to reveal the relationship of the distribution of particle size to that of the potential energy intensity before fragmentation, which finds out that the potential energy density has a linear relation to the logarithm of particle size and deduces that the distribution of the logarithm of particle size conforms to normal distribution because the distribution of the potential energy density does so. Based on this finding and by including the energy principle of rock fragmentation, the logarithm distribution model of particle size is formulated, which uncovers the natural characteristics of particle sizes on statistical distribution. Exploring the properties of the average value, the expectation, and the unbiased variance of particle size indicates that the expectation does notequal to the average value, but increases with increasing particle size and its ununiformity, and is always larger than the average value, and the unbiased variance increases as the ununiformity and geometric average value increase. A case study proves that the simulated results by the proposed logarithm distribution model accord with the actual data. It is concluded that the logarithm distribution model and Kuz-Ram model can be used to forecast the particle-size distribution of inartificial rockfill while for blasted rockfill, Kuz-Ram model is an option, and in combined application of the two models, it is necessary to do field tests to adjust some parameters of the model.展开更多
This paper elaborates the application value of traditional building materials in modem architecture and analyzes the specific application modes of traditional building materials in modem architecture, so as to make tr...This paper elaborates the application value of traditional building materials in modem architecture and analyzes the specific application modes of traditional building materials in modem architecture, so as to make traditional building materials advance with the times, better express their unique value, serve modem architecture, and realize combined application with modem architecture.展开更多
Standard finite element approaches are still ineffective in handling extreme material deformation, such as cases of large deformations and moving discontinuities due to severe mesh distortion. Among meshfree methods d...Standard finite element approaches are still ineffective in handling extreme material deformation, such as cases of large deformations and moving discontinuities due to severe mesh distortion. Among meshfree methods developed to overcome the ineffectiveness, Reproducing Kernel Particle Method (RKPM) has demonstrated its great suitability for structural analysis.This paper presents applications of RKPM in elasto-plastic problems after a review of meshfree methods and an introduction to RKPM. A slope stability problem in geotechnical engineering is analyzed as an illustrative case. The corresponding numerical simulations are carried out on an SGI Onyx3900 supercomputer. Comparison of the RKPM and the FEM under identical conditions showed that the RKPM is more suitable for problems where there exists extremely large strain such as in the case of slope sliding.展开更多
The current sound absorption theory which is based on Rayleigh model believes that fibrous material absorb sound by the fluid frictional energy dissipation between the air and the solid fibers. However, Rayleigh model...The current sound absorption theory which is based on Rayleigh model believes that fibrous material absorb sound by the fluid frictional energy dissipation between the air and the solid fibers. However, Rayleigh model is only useful for a quanlitative understanding of effects In a porous material but not for calculation of the acoustical properties of real absorbent. In this paper, a new vibration sound absorption theory which is totally different from classical theory was put forward. The specific acoustic impedance of fiber layers have been derived from the membrane vibration equation and the sound absorption coefficient calculated agree with test results. The new theory can explaIn the phenomenon that thIn fiber layers exhibit less sound absorption coefficient when it was as the cover fabric of sound absorber, but it is more efficient to sound absorption when it was hang as the curtains or have back cavity behind it.展开更多
The Centennial Hall was designed as a monumental building entirely of reinforced concrete. Soon it became a model for modernist buildings of that era. During the years 2009-2011, the biggest renovation since its compl...The Centennial Hall was designed as a monumental building entirely of reinforced concrete. Soon it became a model for modernist buildings of that era. During the years 2009-2011, the biggest renovation since its completion took place. All activities described in the following paper aimed to put the Centennial Hall into good repair and adjust it to the applicable requirements of modem public buildings. The primary aim is to preserve the authenticity of the original materials used in construction through the use of remedial technologies, thereby maintaining the historical integrity of the building.展开更多
Based on a large number of orthogonal tests and theoretical analyses, the retarding mortar which meets the requirements of retard-bonded prestressed concrete was prepared. Initial setting time of the retarding mortar ...Based on a large number of orthogonal tests and theoretical analyses, the retarding mortar which meets the requirements of retard-bonded prestressed concrete was prepared. Initial setting time of the retarding mortar may vary from several hours to 15 d at 5 ℃-35 ℃ due to quantities and average curing temperature. And its 28 d compressive strength is above 35 MPa. Thus the influence of quantities on setting time and 28 d compressive strength, and the relationship between setting time and average curing temperature were investigated. The optimum quantities were obtained by studying the interaction of admixtures, and the retarding mechanism was discussed. Based on 52 retard-bonded prestressed strands by manual work from 24 retard-bonded prestressed concrete T-beams, static friction drag, change factor κ and friction factor μ were obtained from the test when retard-bonded prestressed strands were tensioned. Application of the retarding mortar will be vast in practical concrete projects.展开更多
Innovation and energy efficiency are the essential paradigms of the new technology and design culture, in the sustainable economic and social development, highlighting the performance of new technologies, systems and ...Innovation and energy efficiency are the essential paradigms of the new technology and design culture, in the sustainable economic and social development, highlighting the performance of new technologies, systems and intelligent materials, such as sustainable identities in architectural envelopes. Then, contextualized sustainable architectural objectives favor material and energy flows, pointing to the constructive flexibility, identity and compatibility of technological innovation, which contrasts with climate change. So sustainable use of natural resources, renewable energy, in line with the principles of the 2030 Agenda for SDGs (Sustainable Development Goals). The well-being of the community with the valorisation of places and the environment, indicates the technological excellence of architecture, synchronous with territorial metamorphoses. Thus, vision glass principles in the environmentally responsive wall, and engineered wall, in external awareness, cellular flooring for eco-efficiency. The methodologies indicate the applications of new design models for new constructions and regeneration, with dynamic, efficient and integrated envelopes integrated with renewable energy storage technologies, neomaterials and high performance insulating. Then HPP (high performance polymers) nanotechnologies are based on efficient pigments, intelligent bioPCM (PCM for phase change material) nano technologies, thermoregulators with high thermal inertia. The goal is towards an escalation of sustainable architectures that contrasts with climate change and pollution ofanthropic origin, for smart and sustainable growth.展开更多
Up to now, reuse and recycling of existing buildings have not been examined widely. This paper discusses the theories, methods and practicalities of buildings' end of life with a main focus on planning and managing r...Up to now, reuse and recycling of existing buildings have not been examined widely. This paper discusses the theories, methods and practicalities of buildings' end of life with a main focus on planning and managing reuse and recycling of existing buildings. Our aim is the realistic modelling of theoretical scenarios for end of life based on a case study. The methods of building survey, material classification and documentation for reuse, recycling and disposal of existing constructions are presented. Investigations and calculations were done on an existing cottage in the Alps. The ecologically most beneficial disposal phase of the old wooden hut is our main objective. Critical questions arise from the quality of the material and how it can be extracted, separated and balanced in an appropriate way. A systematic survey of the building by inspection of constructions and materials in iterative steps allows a detailed material balance with condition and property information. This information is crucial for scenarios and material flow analysis of demolished and rebuilt building in environmental system analysis. For future planning, the reuse and recycling of existing buildings should be integrated quite early in the planning process so that we can use the materials in the best way.展开更多
Low-rise apartments for low-income residents have been built in Surabaya in recent years. They have four stories and many rooms, and the dwellers are all small traders. Because these projects are built with funds from...Low-rise apartments for low-income residents have been built in Surabaya in recent years. They have four stories and many rooms, and the dwellers are all small traders. Because these projects are built with funds from the government, the buildings are designed to consider the cost of construction, without consideration of embodied energy material. As a result, the buildings are not optimal in terms of embodied energy and construction cost. At present, because there are both concerns over global warning and a worldwide energy crisis, the embodied energy in a building is a very important concept for building design, because it can determine usage of energy in relation to natural sources, especially fossil fuels. This is part of the sustainable design concept. This paper describes research regarding: differences in embodied energy and construction cost between different wall materials, including brick, corn block and lightweight concrete in low rise apartments; the optimal relationship between embodied energy and building cost; and which factors determine these differences. The findings of this research show that lightweight concrete is the best material for the building walls; apartments for low-income in Surabaya still do not represent optimal construction design; and that sustainable buildings are cheaper than those that do not use this concept.展开更多
The contemporary demand for reducing carbon emission is changing the way architects design buildings, thus influencing a wide range of new solutions. In this paper, the author presents a method that intends to contrib...The contemporary demand for reducing carbon emission is changing the way architects design buildings, thus influencing a wide range of new solutions. In this paper, the author presents a method that intends to contribute for the discussion of recent strategies that lower the buildings' consumption of energy. The study establishes three priority parameters to analyze the faqades based on the materials, the practices and the thermal behavior. Each parameter is measured separately scaled from artificial to natural building materials, local to distant practices and insulation to inertia. The design of facades has been evolving to follow complex regulations that aim to increase the required sustainable performance of buildings. Scientific data is measurable individually by each parameter, though the cross influence between parameters raise the level of complexity. Shading systems, solar passive energy influence the measurement but the growing use of renewable energies affects the measurements of energy consumption. Each design responds differently to climatic conditions, and requires complex analyses considering the specificity of the natural environment and cultural context. The discussion makes use of scientific data that influences architectural design, the research requires a broader perception thus including cultural aspects. Recent high tech insulating systems have an effect on design solutions that characterize biophilia (human love of nature). The wisdom of traditional local solutions tested over generations holds cultural aspects of biomimicry (nature as model). The aim is to discuss whether the framework based on biophilia and biomimicry is useful for the research.展开更多
The paper briefly retrospected the history of wood construction building in China, thenparticularly discussed the great significance, wood supply, safety problem and cost of woodconstruction building after recovery. F...The paper briefly retrospected the history of wood construction building in China, thenparticularly discussed the great significance, wood supply, safety problem and cost of woodconstruction building after recovery. Furthermore, some advice was put forward, and finally thedevelopment foreground was in prospect.展开更多
基金Chongqing Science and Technology Committee on basic research(No.2001-74-29) and Ministry of communications on Western Communications Construct Research Item(No. 200231800034)
文摘The particle size distribution of rockfill is studied by using granular mechanics, mesomechanics and probability statistics to reveal the relationship of the distribution of particle size to that of the potential energy intensity before fragmentation, which finds out that the potential energy density has a linear relation to the logarithm of particle size and deduces that the distribution of the logarithm of particle size conforms to normal distribution because the distribution of the potential energy density does so. Based on this finding and by including the energy principle of rock fragmentation, the logarithm distribution model of particle size is formulated, which uncovers the natural characteristics of particle sizes on statistical distribution. Exploring the properties of the average value, the expectation, and the unbiased variance of particle size indicates that the expectation does notequal to the average value, but increases with increasing particle size and its ununiformity, and is always larger than the average value, and the unbiased variance increases as the ununiformity and geometric average value increase. A case study proves that the simulated results by the proposed logarithm distribution model accord with the actual data. It is concluded that the logarithm distribution model and Kuz-Ram model can be used to forecast the particle-size distribution of inartificial rockfill while for blasted rockfill, Kuz-Ram model is an option, and in combined application of the two models, it is necessary to do field tests to adjust some parameters of the model.
文摘This paper elaborates the application value of traditional building materials in modem architecture and analyzes the specific application modes of traditional building materials in modem architecture, so as to make traditional building materials advance with the times, better express their unique value, serve modem architecture, and realize combined application with modem architecture.
文摘Standard finite element approaches are still ineffective in handling extreme material deformation, such as cases of large deformations and moving discontinuities due to severe mesh distortion. Among meshfree methods developed to overcome the ineffectiveness, Reproducing Kernel Particle Method (RKPM) has demonstrated its great suitability for structural analysis.This paper presents applications of RKPM in elasto-plastic problems after a review of meshfree methods and an introduction to RKPM. A slope stability problem in geotechnical engineering is analyzed as an illustrative case. The corresponding numerical simulations are carried out on an SGI Onyx3900 supercomputer. Comparison of the RKPM and the FEM under identical conditions showed that the RKPM is more suitable for problems where there exists extremely large strain such as in the case of slope sliding.
基金Key Laboratory Items of Shanxi Province (No.05JS07)
文摘The current sound absorption theory which is based on Rayleigh model believes that fibrous material absorb sound by the fluid frictional energy dissipation between the air and the solid fibers. However, Rayleigh model is only useful for a quanlitative understanding of effects In a porous material but not for calculation of the acoustical properties of real absorbent. In this paper, a new vibration sound absorption theory which is totally different from classical theory was put forward. The specific acoustic impedance of fiber layers have been derived from the membrane vibration equation and the sound absorption coefficient calculated agree with test results. The new theory can explaIn the phenomenon that thIn fiber layers exhibit less sound absorption coefficient when it was as the cover fabric of sound absorber, but it is more efficient to sound absorption when it was hang as the curtains or have back cavity behind it.
文摘The Centennial Hall was designed as a monumental building entirely of reinforced concrete. Soon it became a model for modernist buildings of that era. During the years 2009-2011, the biggest renovation since its completion took place. All activities described in the following paper aimed to put the Centennial Hall into good repair and adjust it to the applicable requirements of modem public buildings. The primary aim is to preserve the authenticity of the original materials used in construction through the use of remedial technologies, thereby maintaining the historical integrity of the building.
文摘Based on a large number of orthogonal tests and theoretical analyses, the retarding mortar which meets the requirements of retard-bonded prestressed concrete was prepared. Initial setting time of the retarding mortar may vary from several hours to 15 d at 5 ℃-35 ℃ due to quantities and average curing temperature. And its 28 d compressive strength is above 35 MPa. Thus the influence of quantities on setting time and 28 d compressive strength, and the relationship between setting time and average curing temperature were investigated. The optimum quantities were obtained by studying the interaction of admixtures, and the retarding mechanism was discussed. Based on 52 retard-bonded prestressed strands by manual work from 24 retard-bonded prestressed concrete T-beams, static friction drag, change factor κ and friction factor μ were obtained from the test when retard-bonded prestressed strands were tensioned. Application of the retarding mortar will be vast in practical concrete projects.
文摘Innovation and energy efficiency are the essential paradigms of the new technology and design culture, in the sustainable economic and social development, highlighting the performance of new technologies, systems and intelligent materials, such as sustainable identities in architectural envelopes. Then, contextualized sustainable architectural objectives favor material and energy flows, pointing to the constructive flexibility, identity and compatibility of technological innovation, which contrasts with climate change. So sustainable use of natural resources, renewable energy, in line with the principles of the 2030 Agenda for SDGs (Sustainable Development Goals). The well-being of the community with the valorisation of places and the environment, indicates the technological excellence of architecture, synchronous with territorial metamorphoses. Thus, vision glass principles in the environmentally responsive wall, and engineered wall, in external awareness, cellular flooring for eco-efficiency. The methodologies indicate the applications of new design models for new constructions and regeneration, with dynamic, efficient and integrated envelopes integrated with renewable energy storage technologies, neomaterials and high performance insulating. Then HPP (high performance polymers) nanotechnologies are based on efficient pigments, intelligent bioPCM (PCM for phase change material) nano technologies, thermoregulators with high thermal inertia. The goal is towards an escalation of sustainable architectures that contrasts with climate change and pollution ofanthropic origin, for smart and sustainable growth.
文摘Up to now, reuse and recycling of existing buildings have not been examined widely. This paper discusses the theories, methods and practicalities of buildings' end of life with a main focus on planning and managing reuse and recycling of existing buildings. Our aim is the realistic modelling of theoretical scenarios for end of life based on a case study. The methods of building survey, material classification and documentation for reuse, recycling and disposal of existing constructions are presented. Investigations and calculations were done on an existing cottage in the Alps. The ecologically most beneficial disposal phase of the old wooden hut is our main objective. Critical questions arise from the quality of the material and how it can be extracted, separated and balanced in an appropriate way. A systematic survey of the building by inspection of constructions and materials in iterative steps allows a detailed material balance with condition and property information. This information is crucial for scenarios and material flow analysis of demolished and rebuilt building in environmental system analysis. For future planning, the reuse and recycling of existing buildings should be integrated quite early in the planning process so that we can use the materials in the best way.
文摘Low-rise apartments for low-income residents have been built in Surabaya in recent years. They have four stories and many rooms, and the dwellers are all small traders. Because these projects are built with funds from the government, the buildings are designed to consider the cost of construction, without consideration of embodied energy material. As a result, the buildings are not optimal in terms of embodied energy and construction cost. At present, because there are both concerns over global warning and a worldwide energy crisis, the embodied energy in a building is a very important concept for building design, because it can determine usage of energy in relation to natural sources, especially fossil fuels. This is part of the sustainable design concept. This paper describes research regarding: differences in embodied energy and construction cost between different wall materials, including brick, corn block and lightweight concrete in low rise apartments; the optimal relationship between embodied energy and building cost; and which factors determine these differences. The findings of this research show that lightweight concrete is the best material for the building walls; apartments for low-income in Surabaya still do not represent optimal construction design; and that sustainable buildings are cheaper than those that do not use this concept.
文摘The contemporary demand for reducing carbon emission is changing the way architects design buildings, thus influencing a wide range of new solutions. In this paper, the author presents a method that intends to contribute for the discussion of recent strategies that lower the buildings' consumption of energy. The study establishes three priority parameters to analyze the faqades based on the materials, the practices and the thermal behavior. Each parameter is measured separately scaled from artificial to natural building materials, local to distant practices and insulation to inertia. The design of facades has been evolving to follow complex regulations that aim to increase the required sustainable performance of buildings. Scientific data is measurable individually by each parameter, though the cross influence between parameters raise the level of complexity. Shading systems, solar passive energy influence the measurement but the growing use of renewable energies affects the measurements of energy consumption. Each design responds differently to climatic conditions, and requires complex analyses considering the specificity of the natural environment and cultural context. The discussion makes use of scientific data that influences architectural design, the research requires a broader perception thus including cultural aspects. Recent high tech insulating systems have an effect on design solutions that characterize biophilia (human love of nature). The wisdom of traditional local solutions tested over generations holds cultural aspects of biomimicry (nature as model). The aim is to discuss whether the framework based on biophilia and biomimicry is useful for the research.
文摘The paper briefly retrospected the history of wood construction building in China, thenparticularly discussed the great significance, wood supply, safety problem and cost of woodconstruction building after recovery. Furthermore, some advice was put forward, and finally thedevelopment foreground was in prospect.