期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
建筑蓄热原理及其设计参数 被引量:1
1
作者 刘衍 毕冰藤 +2 位作者 乔宇豪 杨柳 刘加平 《科学通报》 EI CAS CSCD 北大核心 2024年第11期1475-1490,共16页
建筑蓄热是解决建筑热流作用不稳定的核心,通过建筑设计的方式,将建筑部件的“削峰填谷”效应与其他因素耦合,使建筑对热流的调控作用最大化,实现对室内热环境的优化.本文对建筑蓄热相关概念做了辨析,将“建筑蓄热”与“围护结构蓄热”... 建筑蓄热是解决建筑热流作用不稳定的核心,通过建筑设计的方式,将建筑部件的“削峰填谷”效应与其他因素耦合,使建筑对热流的调控作用最大化,实现对室内热环境的优化.本文对建筑蓄热相关概念做了辨析,将“建筑蓄热”与“围护结构蓄热”,“保温”与“隔热”,“热惰性”、“热质量”以及“热惰性指标”等相似概念进行区分,总结了建筑蓄热的作用原理和基础模型,揭示了各向异性太阳辐射多过程传输与转化形成的“双高波谷温度波”效应,和部件蓄热、自然通风与长波辐射降温多种热作用形成的“双低波峰温度波”效应,提出了能够表征建筑系统蓄热能力的指标参数.通过对蓄热问题历史发展背景的挖掘和对相关研究现状的梳理,总结了我国在建筑蓄热研究中存在的问题.建筑蓄热在不同气候条件下的应用潜力差异显著,将相关气候指标应用到建筑热工设计分区之中是当务之急;建筑热工设计过度追求构件高指标,实际则是建筑整体低性能,亟需构建以建筑蓄热为代表的热工设计综合指标体系;亟需加强建筑蓄热基础理论研究,强化建筑蓄热与建筑设计之间的联系. 展开更多
关键词 建筑节能 建筑蓄热 建筑热工 建筑热流 围护结构
原文传递
The Effect of Micro Air Movement on the Heat and Moisture Characteristics of Building Constructions
2
作者 A.W.M. (Jos) van Schijndel 《Journal of Civil Engineering and Architecture》 2010年第10期9-15,共7页
The research focuses on the effect of air movement through building constructions. Although the typical air movement inside building constructions is quite small (velocity is of order -10-5 m/s), this research shows... The research focuses on the effect of air movement through building constructions. Although the typical air movement inside building constructions is quite small (velocity is of order -10-5 m/s), this research shows the impact on the heat and moisture characteristics. The paper presents a case study on the modeling and simulation of 2D heat and moisture transport with and without air movement for a building construction using a state-of-art multiphysics FEM software tool. Most other heat and moisture related models don't include airflow or use a steady airflow through the construction during the simulation period. However, in this model, the wind induced pressure is dynamic and thus also the airflow through the construction is dynamic. For this particular case study, the results indicate that at the intemal surface, the vapor pressure is almost not influenced by both the 2D effect and the wind speed. The temperatures at the inner surface are mostly influenced by the 2D effect. Only at wind pressure differences above 30 Pa, the airflow has a significant effect. At the extemal surface, the temperatttres are not influenced by both the 2D effect and the wind speed. However, the vapor pressure seems to be quite dependent on the wind induced pressure. Overall it is concluded that air movement through building materials seems to have a significant impact on the heat and moisture characteristics. In order to verify this statement and validate the models, new in-depth experiments including air flow through materials are recommended. 展开更多
关键词 CONSTRUCTION HEAT MOISTURE TRANSFER air movement modeling.
下载PDF
Design of a Mobile Probe to Predict Convection Heat Transfer on BIPV (Building Integrated Photovoltaic) at UTS (University of Technology Sydney)
3
作者 Jafar Madadnia 《Journal of Energy and Power Engineering》 2015年第11期976-985,共10页
In the absence of a simple technique to predict convection heat transfer on BIPV (building integrated photovoltaic) surfaces, a mobile probe with two thermocouples was designed. Thermal boundary layers on vertical f... In the absence of a simple technique to predict convection heat transfer on BIPV (building integrated photovoltaic) surfaces, a mobile probe with two thermocouples was designed. Thermal boundary layers on vertical flat surfaces ofa PV (photovoltaic) and a metallic plate were traversed. The plate consisted of twelve heaters where heat flux and surface temperature were controlled and measured. Uniform heat flux condition was developed on the heaters to closely simulate non-uniform temperature distribution on vertical PV modules. The two thermocouples on the probe measured local air temperature and contact temperature with the wall surface. Experimental results were presented in the forms of local Nusselt numbers versus Rayleigh numbers "Nu = a'(Ra)b'', and surface temperature versus dimensionless height (Ts - T∞ = c.(z/h)d). The constant values for "a", "b", "c" and "d" were determined from the best curve-fitting to the power-law relation. The convection heat transfer predictions from the empirical correlations were found to be in consistent with those predictions made by a number of correlations published in the open literature. A simple technique is then proposed to employ two experimental data from the probe to refine empirical correlations as the operational conditions change. A flexible technique to update correlations is of prime significance requirement in thermal design and operation of BIPV modules. The work is in progress to further extend the correlation to predict the combined radiation and convection on inclined PVs and channels. 展开更多
关键词 Natural convection heat transfer PV BIPV experimental method empirical correlations.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部