Performances and efficiencies of displacement ventilation(DV) and partial ventilation(PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numer...Performances and efficiencies of displacement ventilation(DV) and partial ventilation(PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numerically investigated. Three levels of Rayleigh number(5.8×1010, 1.0×1012 and 2.1×1012) and two values of source contaminant flux(5 mg/s and 50 mg/s) were considered. The inlet Reynolds numbers were 2×104, 5×104, 1.5×105 and 4.5×105 for DV and 5×105, 1×106, 2×106 and 4×106 for PV, respectively. From the results, it is concluded that the above parameters have very complex impacts on the conjugated heat and mass transports. From points of view of acceptable indoor air quality and ventilation efficiency, PV at Re=1×106 with side-located sources and 65% of the supply air extracted through floor level outlets is the best choice when Ra=5.8×1010. However, DVs at Re=5×104 and Re=1.5×105with center-located sources and floor-mounted air suppliers are the best choices for Ra=1.0×1012 and Ra=2.1×1012, respectively. When source contaminant flux reaches 50 mg/s, local extraction as a supplement of general ventilation is recommended. The results can be a first approximation to 3D numerical investigation and preliminary ventilation system design guidelines for high-rise industrial halls.展开更多
The wind field and pollutant dispersion are predicted numerically in a local urban area with crowded buildings and heavy traffic.A domain decomposition method is used in the large eddy simulation,in which the urban ar...The wind field and pollutant dispersion are predicted numerically in a local urban area with crowded buildings and heavy traffic.A domain decomposition method is used in the large eddy simulation,in which the urban area is decomposed into a central area,where pollution is the major concern,and a surrounding region,where the pollutant distribution is not important.The composite model is proposed for the complex building-street layout.The fine grid mesh is used to resolve the buildings in the central area while the buildings are treated as roughness elements in the surrounding region where the coarse grids are used.The proposed numerical method is applied to simulate the wind field and pollutant dispersion from vehicle exhaust in the Rua Do Campo area of Macao.The results show that the composite model is an appropriate method for predicting wind field and pollutant dispersion in the crowded building area.展开更多
基金Project(2011BAJ03B07)supported by National Twelve Five-year Science and Technology Support Program of ChinaProject supported by the China Scholarship Council+1 种基金Project(51276057,51376198)supported by the National Natural Science Foundation of ChinaProject(CX2014B064)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Performances and efficiencies of displacement ventilation(DV) and partial ventilation(PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numerically investigated. Three levels of Rayleigh number(5.8×1010, 1.0×1012 and 2.1×1012) and two values of source contaminant flux(5 mg/s and 50 mg/s) were considered. The inlet Reynolds numbers were 2×104, 5×104, 1.5×105 and 4.5×105 for DV and 5×105, 1×106, 2×106 and 4×106 for PV, respectively. From the results, it is concluded that the above parameters have very complex impacts on the conjugated heat and mass transports. From points of view of acceptable indoor air quality and ventilation efficiency, PV at Re=1×106 with side-located sources and 65% of the supply air extracted through floor level outlets is the best choice when Ra=5.8×1010. However, DVs at Re=5×104 and Re=1.5×105with center-located sources and floor-mounted air suppliers are the best choices for Ra=1.0×1012 and Ra=2.1×1012, respectively. When source contaminant flux reaches 50 mg/s, local extraction as a supplement of general ventilation is recommended. The results can be a first approximation to 3D numerical investigation and preliminary ventilation system design guidelines for high-rise industrial halls.
基金the National Natural Science Foundation of China(Grant No. 10872109)the Foundation for Development of Science and Technology in Macao(Grant No. FDCT 055/2005/A)the Supercomputing Center of Chinese Academy of Sciences
文摘The wind field and pollutant dispersion are predicted numerically in a local urban area with crowded buildings and heavy traffic.A domain decomposition method is used in the large eddy simulation,in which the urban area is decomposed into a central area,where pollution is the major concern,and a surrounding region,where the pollutant distribution is not important.The composite model is proposed for the complex building-street layout.The fine grid mesh is used to resolve the buildings in the central area while the buildings are treated as roughness elements in the surrounding region where the coarse grids are used.The proposed numerical method is applied to simulate the wind field and pollutant dispersion from vehicle exhaust in the Rua Do Campo area of Macao.The results show that the composite model is an appropriate method for predicting wind field and pollutant dispersion in the crowded building area.