Many skyscrapers have installed wind turbine systems to use new renewable energy. In particular, building an integrated wind power generation system by installing a wind power generator inside a building is an attract...Many skyscrapers have installed wind turbine systems to use new renewable energy. In particular, building an integrated wind power generation system by installing a wind power generator inside a building is an attractive method to secure safe energy. However, most studies have dealt with the efficiency of wind turbines and the response effects of wind induced vibration; space preparation for wind turbine installations has not been sufficiently considered. This work reviewed the shapes of openings where wind turbines can be installed in skyscrapers, and the characteristics of wind induced vibration responses occurring in the building with changes in cross sectional area. Nine wind power models were constructed to carry out the experiment. According to the experimental results, wind speed varies with shape of opening in the order of C-type>S-type>R-type. Moreover, wind speed increases as the area is reduced.展开更多
In design and construction of low/high rise buildings, different forms of construction can be applied such as concrete shear wall structural system and framed structural system without or with masonry infill walls. At...In design and construction of low/high rise buildings, different forms of construction can be applied such as concrete shear wall structural system and framed structural system without or with masonry infill walls. At present, most buildings in East Africa are constructed as reinforced concrete framed structures with strong masonry infill, but during design, engineers assume that the masonry infill panels have zero contribution in offering load resistance. Due to the problem above, a study with an objective of finding out the influence of masonry panels on the properties of reinforced concrete infilled frame under vertical load has been done. Three types of models: reinforced concrete frame model, masonry model and reinforced concrete frame with masonry infill, were investigated using finite element technique. In additional to the finite element analysis, laboratory models were prepared and tested so as to check the validity of the analytical results. The obtained results have led to an establishment of a mathematical model which may be useful to the design engineers since masonry wall panels can now be considered as load bearing elements. Such consideration of frame together with masonry leads to an accurate and optimal design of the frame, resulting into lesser amount of reinforcement and geometrical properties of the frame.展开更多
基金Project(2011-0028567)supported by the National Research Foundation of Korea
文摘Many skyscrapers have installed wind turbine systems to use new renewable energy. In particular, building an integrated wind power generation system by installing a wind power generator inside a building is an attractive method to secure safe energy. However, most studies have dealt with the efficiency of wind turbines and the response effects of wind induced vibration; space preparation for wind turbine installations has not been sufficiently considered. This work reviewed the shapes of openings where wind turbines can be installed in skyscrapers, and the characteristics of wind induced vibration responses occurring in the building with changes in cross sectional area. Nine wind power models were constructed to carry out the experiment. According to the experimental results, wind speed varies with shape of opening in the order of C-type>S-type>R-type. Moreover, wind speed increases as the area is reduced.
文摘In design and construction of low/high rise buildings, different forms of construction can be applied such as concrete shear wall structural system and framed structural system without or with masonry infill walls. At present, most buildings in East Africa are constructed as reinforced concrete framed structures with strong masonry infill, but during design, engineers assume that the masonry infill panels have zero contribution in offering load resistance. Due to the problem above, a study with an objective of finding out the influence of masonry panels on the properties of reinforced concrete infilled frame under vertical load has been done. Three types of models: reinforced concrete frame model, masonry model and reinforced concrete frame with masonry infill, were investigated using finite element technique. In additional to the finite element analysis, laboratory models were prepared and tested so as to check the validity of the analytical results. The obtained results have led to an establishment of a mathematical model which may be useful to the design engineers since masonry wall panels can now be considered as load bearing elements. Such consideration of frame together with masonry leads to an accurate and optimal design of the frame, resulting into lesser amount of reinforcement and geometrical properties of the frame.