Green cutting has become focus of attention in ecological and environmental protection. Steam is cheap, poilution-free and eco-friendly, and then is a good and economical coolant and lubricant. Steam generator and ste...Green cutting has become focus of attention in ecological and environmental protection. Steam is cheap, poilution-free and eco-friendly, and then is a good and economical coolant and lubricant. Steam generator and steam feeding system were developed to generate and feed steam. Comparative experiments were carried out in cutting AA6061-15 vol.% SiC (25 p.m particle size), with cubic boron nitride (CBN) insert KB-90 grade under the conditions of compressed air, oil water emulsion, steam as coolant and lubricant, and dry cutting, respectively. The experimental results show that, with steam as coolant and lubricant, gradual reduction in the cutting force, friction coefficient, surface roughness and cutting temperature values were observed. Further, there was reduction in built up edge formation. It is proved that use of water steam as coolant and lubricant is environmentally friendly.展开更多
This paper presents a modeling and control of molten metal's pressure in pressing process using an innovative iron casting developed by our group. In this method, molten metal is directly poured into a lower mold, an...This paper presents a modeling and control of molten metal's pressure in pressing process using an innovative iron casting developed by our group. In this method, molten metal is directly poured into a lower mold, and then pressed to fill cavity by an upper mold being lowered down. For complex liquid flow during pressing, the liquid's pressure changing inside vertical path with various contraction and expansion geometries is newly modeled via the unstationary Bernoulli equation. The mathematical model is derived for a control design of pressing. To conduct the pressing velocity design algorithm, an unknown parameter of proposed model considering viscous flow is identified by using CFD (Computational Fluid Dynamics) with heat flow calculation. Control performance using a multi-switching velocity pattern is confirmed as an effective control design using the pressure model, because the pressure fluctuation has discontinuous variation points. Substituting detailed information for mold shape, poured volume and initial temperature into a developed control input generator, an optimum pressing velocity design and a robust design for defect-free production are proposed by the design algorithm based on the construction of an inverse system comprised of the sequential switching from higher to lower speed. Consequently, the effectiveness of the pressing control with reasonable pressure suppression has been demonstrated through CFD.展开更多
文摘Green cutting has become focus of attention in ecological and environmental protection. Steam is cheap, poilution-free and eco-friendly, and then is a good and economical coolant and lubricant. Steam generator and steam feeding system were developed to generate and feed steam. Comparative experiments were carried out in cutting AA6061-15 vol.% SiC (25 p.m particle size), with cubic boron nitride (CBN) insert KB-90 grade under the conditions of compressed air, oil water emulsion, steam as coolant and lubricant, and dry cutting, respectively. The experimental results show that, with steam as coolant and lubricant, gradual reduction in the cutting force, friction coefficient, surface roughness and cutting temperature values were observed. Further, there was reduction in built up edge formation. It is proved that use of water steam as coolant and lubricant is environmentally friendly.
文摘This paper presents a modeling and control of molten metal's pressure in pressing process using an innovative iron casting developed by our group. In this method, molten metal is directly poured into a lower mold, and then pressed to fill cavity by an upper mold being lowered down. For complex liquid flow during pressing, the liquid's pressure changing inside vertical path with various contraction and expansion geometries is newly modeled via the unstationary Bernoulli equation. The mathematical model is derived for a control design of pressing. To conduct the pressing velocity design algorithm, an unknown parameter of proposed model considering viscous flow is identified by using CFD (Computational Fluid Dynamics) with heat flow calculation. Control performance using a multi-switching velocity pattern is confirmed as an effective control design using the pressure model, because the pressure fluctuation has discontinuous variation points. Substituting detailed information for mold shape, poured volume and initial temperature into a developed control input generator, an optimum pressing velocity design and a robust design for defect-free production are proposed by the design algorithm based on the construction of an inverse system comprised of the sequential switching from higher to lower speed. Consequently, the effectiveness of the pressing control with reasonable pressure suppression has been demonstrated through CFD.