Coal mining under buildings certainly causes surface movement and deformation, therefore, it brings about deformation even fracture for buildings. It is an important task to evaluate correcly the buildings’ damage gr...Coal mining under buildings certainly causes surface movement and deformation, therefore, it brings about deformation even fracture for buildings. It is an important task to evaluate correcly the buildings’ damage grabe caused by coal mining. Fuzzy comprehensive evaluation,considering some factors of buildings’ fracture, has been applied to analyze the masonry structure buildings’ damage grade affer coal mining in this paper. It provides a scientific basis for buildings’reidercement before mining and maintenance or compensation after mining.展开更多
The maximum effective hole-diameter mathematical modei describing the flow of slightly compressible fluid through a commingled reservoir was solved rigorously with consideration of wellbore storage and different skin ...The maximum effective hole-diameter mathematical modei describing the flow of slightly compressible fluid through a commingled reservoir was solved rigorously with consideration of wellbore storage and different skin factors. The exact solutions for wellbore pressure and the production rate obtained from layer j for a well production at a constant rate from a radial drainage area with infinite and constant pressure and no flow outer boundary condition were expressed in terms of ordinary Bessel functions. These solutions were computed numerically by the Crump's numerical inversion method and the behavior of systems was studied as a function of various reservoir parameters. The modei was compared with the real wellbore radii modei. The new modei is numerically stable when the skin factor is positive and negative, but the real wellbore radii modei is numerically stable only when the skin factor is positive.展开更多
Based on controls of structural style and the position in coalbed methane (CBM) development, we used a method of curvatures to study its relations with CBM development parameters. We calculated structural curvatures o...Based on controls of structural style and the position in coalbed methane (CBM) development, we used a method of curvatures to study its relations with CBM development parameters. We calculated structural curvatures of contours of the No.3 coal seam floor of the Shanxi Formation in the Zaoyuan block of the Qinshui Basin and analyzed its relations with development parameters of coalbed methane wells. The results show that structural curvature is negatively related to coal reservoir pressure, while positively related to permeability. With an increase in structural curvature, the average production of coalbed methane wells increases at first and then decreases, reaching the highest production at 0.02 m–1 of structural curvature. Therefore, structural cur-vature can be an important index for potential evaluation of coalbed methane development and provide a basis for siting coalbed methane wells.展开更多
In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from ...In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.展开更多
Coalbed methane(CBM) commercial development requires choosing the arrangement of the wells.This should be done by considering the corresponding input-output(investment-profit) efficiencies.Simulations were obtained fr...Coalbed methane(CBM) commercial development requires choosing the arrangement of the wells.This should be done by considering the corresponding input-output(investment-profit) efficiencies.Simulations were obtained from the computer modeling group(CMG) given the reservoir conditions of the Panzhuang block in the southern part of the Qinshui Basin.This is a demonstration region for CBM development located in Shanxi province of northern China.The sensitivity of gas production from a single vertical well to the primary reservoir parameters was estimated first.Then multi-well gas production from three different well patterns was simulated to estimate the most appropriate well spacing.Combining the investment requirements then gave investment-profit efficiencies for these well patterns.A data envelopment analysis(DEA) model was used to optimize the efficiency.The results show that the permeability,the reservoir pressure,and the gas content have an evident impact on single well gas production.The desorption time has little or no affect on production.The equilateral triangular well pattern(ETWP) in a 400 m well spacing is,for multi-well development,the optimal pattern.It has a better input-output ratio,a longer stable yield time,and provides for greater CBM recovery than does either the rectangular well pattern(RWP) or the five point well pattern(FPWP).展开更多
文摘Coal mining under buildings certainly causes surface movement and deformation, therefore, it brings about deformation even fracture for buildings. It is an important task to evaluate correcly the buildings’ damage grabe caused by coal mining. Fuzzy comprehensive evaluation,considering some factors of buildings’ fracture, has been applied to analyze the masonry structure buildings’ damage grade affer coal mining in this paper. It provides a scientific basis for buildings’reidercement before mining and maintenance or compensation after mining.
基金National Natural Science Foundation of China(No.50206016)Special Funds for Major State Basic Research Program of China(973 Program,No.1999022308)
文摘The maximum effective hole-diameter mathematical modei describing the flow of slightly compressible fluid through a commingled reservoir was solved rigorously with consideration of wellbore storage and different skin factors. The exact solutions for wellbore pressure and the production rate obtained from layer j for a well production at a constant rate from a radial drainage area with infinite and constant pressure and no flow outer boundary condition were expressed in terms of ordinary Bessel functions. These solutions were computed numerically by the Crump's numerical inversion method and the behavior of systems was studied as a function of various reservoir parameters. The modei was compared with the real wellbore radii modei. The new modei is numerically stable when the skin factor is positive and negative, but the real wellbore radii modei is numerically stable only when the skin factor is positive.
基金support for this work, provided by the National Basic Research Program of China (No2009 CB219605)the National Major Research Program for Science and Technology of China (No2008 ZX05033-003)
文摘Based on controls of structural style and the position in coalbed methane (CBM) development, we used a method of curvatures to study its relations with CBM development parameters. We calculated structural curvatures of contours of the No.3 coal seam floor of the Shanxi Formation in the Zaoyuan block of the Qinshui Basin and analyzed its relations with development parameters of coalbed methane wells. The results show that structural curvature is negatively related to coal reservoir pressure, while positively related to permeability. With an increase in structural curvature, the average production of coalbed methane wells increases at first and then decreases, reaching the highest production at 0.02 m–1 of structural curvature. Therefore, structural cur-vature can be an important index for potential evaluation of coalbed methane development and provide a basis for siting coalbed methane wells.
文摘In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.
基金supported by the National Natural Science Foundation of China (No. 40972207)the National Science and Technology Major Projects (No. 2011ZX05034-005)the PAPD of Jiangsu Higher Education Institutions
文摘Coalbed methane(CBM) commercial development requires choosing the arrangement of the wells.This should be done by considering the corresponding input-output(investment-profit) efficiencies.Simulations were obtained from the computer modeling group(CMG) given the reservoir conditions of the Panzhuang block in the southern part of the Qinshui Basin.This is a demonstration region for CBM development located in Shanxi province of northern China.The sensitivity of gas production from a single vertical well to the primary reservoir parameters was estimated first.Then multi-well gas production from three different well patterns was simulated to estimate the most appropriate well spacing.Combining the investment requirements then gave investment-profit efficiencies for these well patterns.A data envelopment analysis(DEA) model was used to optimize the efficiency.The results show that the permeability,the reservoir pressure,and the gas content have an evident impact on single well gas production.The desorption time has little or no affect on production.The equilateral triangular well pattern(ETWP) in a 400 m well spacing is,for multi-well development,the optimal pattern.It has a better input-output ratio,a longer stable yield time,and provides for greater CBM recovery than does either the rectangular well pattern(RWP) or the five point well pattern(FPWP).