When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stra...When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Haizi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.展开更多
Elastic control could balance the distributed control plane in Software-Defined Networking(SDN). Dynamic switch migration has been proposed to achieve it. However, existing schemes mainly focus on how to execute migra...Elastic control could balance the distributed control plane in Software-Defined Networking(SDN). Dynamic switch migration has been proposed to achieve it. However, existing schemes mainly focus on how to execute migration operation, but not why. This paper designs a decision-making mechanism based on zero-sum game theory to reelect a new controller as the master for migrated switches. It first chooses a switch for migration in the heavy controller which invites its neighbors as the game players to compete for the master role of this switch in the game-playing field(GPF) which is an occasional and loose domain for game-playing. Second, based on the concept of GPF, we design a decentralized strategy to play the game and determine which player as the final master. We implement it by extending the Open Flow protocol. Finally, numerical results demonstrate that our distributed strategy can approach elastic control plane with better performance.展开更多
基金Projects 2005CB221503 supported by the National Basic Research Program of China70533050 and 50674089 by the National Natural Science Foundation of China2005BA813B-3-06 by the National Tenth 5-Year Key Scientific and Technological Project
文摘When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Haizi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.61521003)the National Basic Research Program of China(2012CB315901,2013CB329104)+2 种基金the National Natural Science Foundation of China(Grant No.61372121,61309020,61309019)the National High-Tech Research&Development Program of China(Grant No.2013AA013505)the National Science and Technology Support Program Project(Grant No.2014BAH30B01)
文摘Elastic control could balance the distributed control plane in Software-Defined Networking(SDN). Dynamic switch migration has been proposed to achieve it. However, existing schemes mainly focus on how to execute migration operation, but not why. This paper designs a decision-making mechanism based on zero-sum game theory to reelect a new controller as the master for migrated switches. It first chooses a switch for migration in the heavy controller which invites its neighbors as the game players to compete for the master role of this switch in the game-playing field(GPF) which is an occasional and loose domain for game-playing. Second, based on the concept of GPF, we design a decentralized strategy to play the game and determine which player as the final master. We implement it by extending the Open Flow protocol. Finally, numerical results demonstrate that our distributed strategy can approach elastic control plane with better performance.