Taking the input and reflected waves into account,the relationship between the acoustic impedance at the end and the input of a system were theoretically analyzed.Closed and open acoustic configurations that influence...Taking the input and reflected waves into account,the relationship between the acoustic impedance at the end and the input of a system were theoretically analyzed.Closed and open acoustic configurations that influence the pressure,volumetric velocity,impedance and acoustic work were compared in detail.Based on the above investigation,an open-air traveling-wave thermoacoustic generator was designed and fabricated.It is composed of a looped tube,a resonator open at one end,a regenerator,and hot and cold heat exchangers.It is a small scale and simple configuration.The resonant frequency is 74 Hz at 1 bar in air.The maximum acoustic pressures at the open end and 0.5 m far away from the open end are 133.4 dB and 101 dB from a reference value of 20μPa when the heating power was 210 W,respectively.Acoustic pressure is reasonable for practical application as a low-frequency acoustic source.In further work,we believe that the acoustic pressure at the open end can achieve 150 dB,which could be a solution to problems in existing acoustic generators.These problems include low acoustic pressure and system complexity.It can be used as a basic acoustic source for low frequency and long-range noise experiments,and as a supply for high acoustic pressures necessary for industrial sources.展开更多
基金supported by the National Natural Science Foundation of China(50806081)
文摘Taking the input and reflected waves into account,the relationship between the acoustic impedance at the end and the input of a system were theoretically analyzed.Closed and open acoustic configurations that influence the pressure,volumetric velocity,impedance and acoustic work were compared in detail.Based on the above investigation,an open-air traveling-wave thermoacoustic generator was designed and fabricated.It is composed of a looped tube,a resonator open at one end,a regenerator,and hot and cold heat exchangers.It is a small scale and simple configuration.The resonant frequency is 74 Hz at 1 bar in air.The maximum acoustic pressures at the open end and 0.5 m far away from the open end are 133.4 dB and 101 dB from a reference value of 20μPa when the heating power was 210 W,respectively.Acoustic pressure is reasonable for practical application as a low-frequency acoustic source.In further work,we believe that the acoustic pressure at the open end can achieve 150 dB,which could be a solution to problems in existing acoustic generators.These problems include low acoustic pressure and system complexity.It can be used as a basic acoustic source for low frequency and long-range noise experiments,and as a supply for high acoustic pressures necessary for industrial sources.