期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的高铁接触网旋转双耳开口销钉缺失故障检测
被引量:
15
1
作者
康高强
高仕斌
+1 位作者
于龙
陈健雄
《铁道学报》
EI
CAS
CSCD
北大核心
2020年第10期45-51,共7页
针对高速铁路接触网支撑装置中旋转双耳开口销钉缺失故障检测的问题,提出一种基于深度卷积神经网络和集成学习的故障检测方法。通过Faster R-CNN网络对旋转双耳整体进行精确定位;在整体定位结果的基础上,进一步完成对开口销钉的精确定位...
针对高速铁路接触网支撑装置中旋转双耳开口销钉缺失故障检测的问题,提出一种基于深度卷积神经网络和集成学习的故障检测方法。通过Faster R-CNN网络对旋转双耳整体进行精确定位;在整体定位结果的基础上,进一步完成对开口销钉的精确定位,最大程度上降低背景对故障检测的干扰;通过多个深度卷积神经网络提取开口销钉图像的多种特征,最终由多个线性SVM构成的集成分类器实现开口销钉缺失故障检测。实验结果表明:本方法能在复杂的接触网支撑装置图像中实现旋转双耳开口销钉的精确定位,并且在销钉的缺失故障检测中表现出较高的可靠性。
展开更多
关键词
旋转双耳
开口销钉缺失检测
深度卷积神经网络
集成学习
下载PDF
职称材料
题名
基于深度学习的高铁接触网旋转双耳开口销钉缺失故障检测
被引量:
15
1
作者
康高强
高仕斌
于龙
陈健雄
机构
西南交通大学电气工程学院
出处
《铁道学报》
EI
CAS
CSCD
北大核心
2020年第10期45-51,共7页
基金
国家自然科学基金(U1734202)。
文摘
针对高速铁路接触网支撑装置中旋转双耳开口销钉缺失故障检测的问题,提出一种基于深度卷积神经网络和集成学习的故障检测方法。通过Faster R-CNN网络对旋转双耳整体进行精确定位;在整体定位结果的基础上,进一步完成对开口销钉的精确定位,最大程度上降低背景对故障检测的干扰;通过多个深度卷积神经网络提取开口销钉图像的多种特征,最终由多个线性SVM构成的集成分类器实现开口销钉缺失故障检测。实验结果表明:本方法能在复杂的接触网支撑装置图像中实现旋转双耳开口销钉的精确定位,并且在销钉的缺失故障检测中表现出较高的可靠性。
关键词
旋转双耳
开口销钉缺失检测
深度卷积神经网络
集成学习
Keywords
swivel with clevis
split pins missing fault detection
deep convolution neural network
ensemble learning
分类号
U225.42 [交通运输工程—道路与铁道工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的高铁接触网旋转双耳开口销钉缺失故障检测
康高强
高仕斌
于龙
陈健雄
《铁道学报》
EI
CAS
CSCD
北大核心
2020
15
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部