Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that re...Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.展开更多
The study analyzes the characteristics of roof movement in mining top coal of inclined coal seam,and establishes the mechanical model of support and surrounding-rock stability in inclined coal seam.Besides,this study ...The study analyzes the characteristics of roof movement in mining top coal of inclined coal seam,and establishes the mechanical model of support and surrounding-rock stability in inclined coal seam.Besides,this study carries out the numerical calculation and field observation of roof movement and support stability,and provides the critical control measures.The results show that the fracture firstly appears in middle-upper roof and extends upwards in top coal caving in inclined coal seam;regular and irregular caving zones appear in middle-upper stress concentration region,and the asymmetric caving arch is finally formed.Support load of middle-upper working face is larger than that of the middle-lower face;dynamic load coefficient of upper support is large,and the load on the front of support is larger than that on the rear of it,which leads to poor support stability.Stability of support and surrounding-rock system depends mainly on upper-support stability.展开更多
According to the influence of the combination of short-distance coal seam group on mining roadway, using numerical simulation software FLAG2D to draw the abutment pressure distribution ahead the working face and the a...According to the influence of the combination of short-distance coal seam group on mining roadway, using numerical simulation software FLAG2D to draw the abutment pressure distribution ahead the working face and the area of influence in fully-mechanized mining conditions, the variation rules of surrounding rock supporting pressure of floor roadway and the deformation rules were summarized. GYS-300 anchor dynamometer was used to measure the roadway surface displacement, and the conclusions of numerical simulation were verified.展开更多
In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimension...In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.展开更多
According to the movement and change rules of mechanical structure of surrounding rock coal mass system during coal excavation, the mechanism of sudden instability and damage was found out. The criterions that disting...According to the movement and change rules of mechanical structure of surrounding rock coal mass system during coal excavation, the mechanism of sudden instability and damage was found out. The criterions that distinguishing the occurring of the pressure bump were put forward. This criteria have been applied successfully in the comprehensive prevent of pressure bumps in Tangshan colliery.展开更多
AIM To evaluate the short-and long-term results of endoscopic ultrasound-guided transmural drainage(EUS-GTD) for pancreatic fluid collection(PFC) and identify the predictive factors of treatment outcome for walled-off...AIM To evaluate the short-and long-term results of endoscopic ultrasound-guided transmural drainage(EUS-GTD) for pancreatic fluid collection(PFC) and identify the predictive factors of treatment outcome for walled-off necrosis(WON) managed by EUS-GTD alone.METHODS We investigated 103 consecutive patients with PFC who underwent EUS-GTD between September 1999 and August 2015. Patients were divided into four groups as follows: WON(n = 40), pancreatic pseudocyst(PPC; n = 11), chronic pseudocyst(n = 33), and others(n = 19). We evaluated the short-and long-term outcomes of the treatment. In cases of WON, multiple logistic regression analyses were performed to identify the predictor variables associated with the treatment success. In addition, PFC recurrence was examined in patients followed up for more than 6 mo and internal stent removal after successful EUS-GTD was confirmed.RESULTS In this study, the total technical success rate was 96.1%. The treatment success rate of WON, PPC, chronic pseudocyst, and others was 57.5%, 90.9%, 91.0%, and 89.5%, respectively. Contrast-enhanced computed tomography using the multivariate logistic regression analysis revealed that the treatment success rate of WON was significantly lower in patients with more than 50% pancreatic parenchymal necrosis(OR = 17.0; 95%CI: 1.9-150.7; P = 0.011) and in patients with more than 150 mm of PFC(OR = 27.9; 95%CI: 3.4-227.7; P = 0.002).The recurrence of PFC in the long term was 13.3%(median observation time, 38.8 mo). Mean amylase level in the cavity was significantly higher in the recurrence group than in the no recurrence group(P = 0.02).CONCLUSION The reduction of WON by EUS-GTD alone was associated with the proportion of necrotic tissue and extent of the cavity. The amylase level in the cavity may be a predictive factor for recurrence of PFC.展开更多
In order to control asymmetric floor heave in deep rock roadways and deformation around the surrounding rock mass after excavation, in this paper we discuss the failure mechanism and coupling control countermeasures u...In order to control asymmetric floor heave in deep rock roadways and deformation around the surrounding rock mass after excavation, in this paper we discuss the failure mechanism and coupling control countermeasures using the finite difference method (FLAC^3D) combined with comparative analysis and typical engineering application at Xingcun coal mine, It is indicated by the analysis that the simple symmetric support systems used in the past led to destruction of the deep rock roadway from the key zone and resulted in the deformation of asymmetric floor heave in the roadway. Suitable rein- forced support countermeasures are proposed to reduce the deformation of the floor heave and the potential risk during mining. The application shows that the present support technology can he used to better environmental conditions. The countermeasures of asymmetric coupling support can not only effectively reduce the discrepancy deformation at the key area of the surrounding rock mass, hut also effectively control floor heave, which helps realize the integration of support and maintain the stability of the deep rock roadways at Xingcun coal mine.展开更多
Discussed advantages of improved Monte-Carlo method and feasibility about proposed approach applying in reliability analysis for tunnel surrounding rock stability.On the basis of deterministic parsing for tunnel surro...Discussed advantages of improved Monte-Carlo method and feasibility about proposed approach applying in reliability analysis for tunnel surrounding rock stability.On the basis of deterministic parsing for tunnel surrounding rock,reliability computing method of surrounding rock stability was derived from improved Monte-Carlo method.The com- puting method considered random of related parameters,and therefore satisfies relativity among parameters.The proposed method can reasonably determine reliability of sur- rounding rock stability.Calculation results show that this method is a scientific method in discriminating and checking surrounding rock stability.展开更多
Urban areas and its evolution are important anthropogenic indicators and human ecological footprints, and play decisive roles in environmental change analysis, global geo-conditional monitoring, and sustainable develo...Urban areas and its evolution are important anthropogenic indicators and human ecological footprints, and play decisive roles in environmental change analysis, global geo-conditional monitoring, and sustainable development. China has the highest rate of urban expansion and has emerged as an urban expansion hotspot worldwide. In this paper, the progress of studies on Chinese urban expansion based on remote sensing technology are summarized and analyzed from the aspects of urban area definition, remotely sensed imagery applied in urban expansion, monitoring methods of urban expansion, and urban expansion applications. Existing issues and future directions of Chinese urban expansion are discussed and proposed. Results indicate that: 1) The fusion of multi-source remotely sensed imagery is imperative to meet the needs of urban expansion with various monitoring terms and frequencies on different scales and dimensions. 2) To guarantee the classification accuracy and efficiency and describe urban expansion and its influences on local land use simultaneously, the combination of visual interpretation and automatic classification is the tendency of future monitoring methods of urban areas. 3) Urban expansion data have become the prerequisite for recognizing the urban development process, excavating its driving forces, simulating and predicting the future development directions, and also is conducive to revealing and explaining urban ecological and environmental issues. 4) In the past decades, Chinese scholars have promoted the application of remote sensing technology in the urban expansion field, with data construction, methods and models developing from the quotation stage to improvement and innovation stage; however, an independent and consistent urban expansion data on the national scale with long-term and high-frequency(such as annual monitoring) monitoring is still lacking.展开更多
Aiming at the characteristics of the poor steady ability, the short stable time and severe deformation behavior of weakly cemented soft surrounding rock around extraction roadway, a bolt–cable combined supporting tec...Aiming at the characteristics of the poor steady ability, the short stable time and severe deformation behavior of weakly cemented soft surrounding rock around extraction roadway, a bolt–cable combined supporting technology was proposed. Numerical simulation was performed by using FLAC3 D software to study the effects of different supporting systems. The simulation result proves that those supporting systems have good practical values. Based on real-time monitoring and analysis of the deformation of surrounding rock and the stress of supporting structure, real time information of deformation of surrounding rock and stress state of supporting structure of extraction roadway within weakly cemented strata was obtained. Monitoring results show that large deformation and failure of surrounding rock of extraction roadway within weakly cemented strata can be effectively controlled by the bolt–cable combined supporting technology, which ensures the long-term stability and safety of surrounding rock and supporting structure.展开更多
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.
基金the financial support received from the National Natural Science Foundation of China (No.51174078)Ph.D.Foundation of Henan Polytechnic University (No.60207004) of Chinathe Fostering Foundation of Henan Polytechnic University for the Excellent Ph.D.Dissertation of China (No.508063)
文摘The study analyzes the characteristics of roof movement in mining top coal of inclined coal seam,and establishes the mechanical model of support and surrounding-rock stability in inclined coal seam.Besides,this study carries out the numerical calculation and field observation of roof movement and support stability,and provides the critical control measures.The results show that the fracture firstly appears in middle-upper roof and extends upwards in top coal caving in inclined coal seam;regular and irregular caving zones appear in middle-upper stress concentration region,and the asymmetric caving arch is finally formed.Support load of middle-upper working face is larger than that of the middle-lower face;dynamic load coefficient of upper support is large,and the load on the front of support is larger than that on the rear of it,which leads to poor support stability.Stability of support and surrounding-rock system depends mainly on upper-support stability.
文摘According to the influence of the combination of short-distance coal seam group on mining roadway, using numerical simulation software FLAG2D to draw the abutment pressure distribution ahead the working face and the area of influence in fully-mechanized mining conditions, the variation rules of surrounding rock supporting pressure of floor roadway and the deformation rules were summarized. GYS-300 anchor dynamometer was used to measure the roadway surface displacement, and the conclusions of numerical simulation were verified.
基金Projects(42077244,41877272)supported by the National Natural Science Foundation of ChinaProject(2020-05)supported by the Open Research Fund of Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization,China。
文摘In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.
文摘According to the movement and change rules of mechanical structure of surrounding rock coal mass system during coal excavation, the mechanism of sudden instability and damage was found out. The criterions that distinguishing the occurring of the pressure bump were put forward. This criteria have been applied successfully in the comprehensive prevent of pressure bumps in Tangshan colliery.
文摘AIM To evaluate the short-and long-term results of endoscopic ultrasound-guided transmural drainage(EUS-GTD) for pancreatic fluid collection(PFC) and identify the predictive factors of treatment outcome for walled-off necrosis(WON) managed by EUS-GTD alone.METHODS We investigated 103 consecutive patients with PFC who underwent EUS-GTD between September 1999 and August 2015. Patients were divided into four groups as follows: WON(n = 40), pancreatic pseudocyst(PPC; n = 11), chronic pseudocyst(n = 33), and others(n = 19). We evaluated the short-and long-term outcomes of the treatment. In cases of WON, multiple logistic regression analyses were performed to identify the predictor variables associated with the treatment success. In addition, PFC recurrence was examined in patients followed up for more than 6 mo and internal stent removal after successful EUS-GTD was confirmed.RESULTS In this study, the total technical success rate was 96.1%. The treatment success rate of WON, PPC, chronic pseudocyst, and others was 57.5%, 90.9%, 91.0%, and 89.5%, respectively. Contrast-enhanced computed tomography using the multivariate logistic regression analysis revealed that the treatment success rate of WON was significantly lower in patients with more than 50% pancreatic parenchymal necrosis(OR = 17.0; 95%CI: 1.9-150.7; P = 0.011) and in patients with more than 150 mm of PFC(OR = 27.9; 95%CI: 3.4-227.7; P = 0.002).The recurrence of PFC in the long term was 13.3%(median observation time, 38.8 mo). Mean amylase level in the cavity was significantly higher in the recurrence group than in the no recurrence group(P = 0.02).CONCLUSION The reduction of WON by EUS-GTD alone was associated with the proportion of necrotic tissue and extent of the cavity. The amylase level in the cavity may be a predictive factor for recurrence of PFC.
基金support from the National Natural Science Foundation of China (Nos. 51134005, 51374214, 41172116, and U1261212)the New Century Excellent Talents Foundation in University (No. NCET-07-0800)the Special Fund of Basic Research and Operating of China University of Mining & Technology in Beijing (No. 2009QL03)
文摘In order to control asymmetric floor heave in deep rock roadways and deformation around the surrounding rock mass after excavation, in this paper we discuss the failure mechanism and coupling control countermeasures using the finite difference method (FLAC^3D) combined with comparative analysis and typical engineering application at Xingcun coal mine, It is indicated by the analysis that the simple symmetric support systems used in the past led to destruction of the deep rock roadway from the key zone and resulted in the deformation of asymmetric floor heave in the roadway. Suitable rein- forced support countermeasures are proposed to reduce the deformation of the floor heave and the potential risk during mining. The application shows that the present support technology can he used to better environmental conditions. The countermeasures of asymmetric coupling support can not only effectively reduce the discrepancy deformation at the key area of the surrounding rock mass, hut also effectively control floor heave, which helps realize the integration of support and maintain the stability of the deep rock roadways at Xingcun coal mine.
基金the National Science Foundation of Shaanxi Province(2003E228)
文摘Discussed advantages of improved Monte-Carlo method and feasibility about proposed approach applying in reliability analysis for tunnel surrounding rock stability.On the basis of deterministic parsing for tunnel surrounding rock,reliability computing method of surrounding rock stability was derived from improved Monte-Carlo method.The com- puting method considered random of related parameters,and therefore satisfies relativity among parameters.The proposed method can reasonably determine reliability of sur- rounding rock stability.Calculation results show that this method is a scientific method in discriminating and checking surrounding rock stability.
基金Under the auspices of National Major Science and Technology Program for Water Pollution Contro and Treatment(No.2017ZX07101001)International Partnership Program of Chinese Academy of Sciences(No.131C11KYSB20160061)
文摘Urban areas and its evolution are important anthropogenic indicators and human ecological footprints, and play decisive roles in environmental change analysis, global geo-conditional monitoring, and sustainable development. China has the highest rate of urban expansion and has emerged as an urban expansion hotspot worldwide. In this paper, the progress of studies on Chinese urban expansion based on remote sensing technology are summarized and analyzed from the aspects of urban area definition, remotely sensed imagery applied in urban expansion, monitoring methods of urban expansion, and urban expansion applications. Existing issues and future directions of Chinese urban expansion are discussed and proposed. Results indicate that: 1) The fusion of multi-source remotely sensed imagery is imperative to meet the needs of urban expansion with various monitoring terms and frequencies on different scales and dimensions. 2) To guarantee the classification accuracy and efficiency and describe urban expansion and its influences on local land use simultaneously, the combination of visual interpretation and automatic classification is the tendency of future monitoring methods of urban areas. 3) Urban expansion data have become the prerequisite for recognizing the urban development process, excavating its driving forces, simulating and predicting the future development directions, and also is conducive to revealing and explaining urban ecological and environmental issues. 4) In the past decades, Chinese scholars have promoted the application of remote sensing technology in the urban expansion field, with data construction, methods and models developing from the quotation stage to improvement and innovation stage; however, an independent and consistent urban expansion data on the national scale with long-term and high-frequency(such as annual monitoring) monitoring is still lacking.
基金financially supported by the National Natural Science Foundation of China (Nos. 51174196, 51204168, 51109209 and 51309222)the Youth Fund Project of Jiangsu Province Natural Science Foundation (No. BK20130193)
文摘Aiming at the characteristics of the poor steady ability, the short stable time and severe deformation behavior of weakly cemented soft surrounding rock around extraction roadway, a bolt–cable combined supporting technology was proposed. Numerical simulation was performed by using FLAC3 D software to study the effects of different supporting systems. The simulation result proves that those supporting systems have good practical values. Based on real-time monitoring and analysis of the deformation of surrounding rock and the stress of supporting structure, real time information of deformation of surrounding rock and stress state of supporting structure of extraction roadway within weakly cemented strata was obtained. Monitoring results show that large deformation and failure of surrounding rock of extraction roadway within weakly cemented strata can be effectively controlled by the bolt–cable combined supporting technology, which ensures the long-term stability and safety of surrounding rock and supporting structure.