期刊文献+
共找到9,182篇文章
< 1 2 250 >
每页显示 20 50 100
基于时间序列相似性与机器学习方法的页岩气井产量预测
1
作者 樊冬艳 杨灿 +4 位作者 孙海 姚军 张磊 付帅师 罗飞 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期119-126,共8页
页岩气井单变量产量预测存在较强的不确定性,而现场生产动态数据同时包括多个相关指标,针对如何选取合理的多变量数据对页岩气井产量进行预测,在保证计算效率的情况下提高预测精度。页岩气井的生产动态数据集包括日产气量、日产水量、... 页岩气井单变量产量预测存在较强的不确定性,而现场生产动态数据同时包括多个相关指标,针对如何选取合理的多变量数据对页岩气井产量进行预测,在保证计算效率的情况下提高预测精度。页岩气井的生产动态数据集包括日产气量、日产水量、套压、油压、油嘴直径、开井时间和温度等,采用欧式距离和动态时间弯曲距离对生产动态数据时间序列进行相似性度量,依据与日产气量的相关度,把数据分为强相关时间序列和弱相关时间序列;其次,基于卷积神经网络、循环神经网络、长短期记忆网络和门控神经网络分别对全时间序列、强相关序列、弱相关序列和单变量序列进行页岩气井产量预测;最后,以平均绝对误差、均方根误差和决定系数作为评价指标,得到不同序列的误差由小到大排序为强相关序列、全时间序列、弱相关序列、单变量序列,优选的机器学习方法为门控神经网络和长短期记忆网络。结果表明,采用机器学习方法结合页岩气井强相关性序列(日产气量、套压、油压、日产水量)能有效降低预测误差,提高页岩气井产量预测效果。 展开更多
关键词 页岩气井 机器学习 相似性 时间序列 产量预测
下载PDF
一种基于线性模糊信息粒的时间序列预测算法
2
作者 杨昔阳 陈豪 +2 位作者 李志伟 张新军 颜星华 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期188-198,共11页
[目的]由于经济、金融、环境和生态等多个领域中时间序列数据规模的持续增长,对其进行预测变得日益复杂,为了提高大规模时间序列的长期预测效率,探索构建模糊信息粒的创新方法,以准确反映数据集大小和趋势信息.[方法]首先,根据模糊拓展... [目的]由于经济、金融、环境和生态等多个领域中时间序列数据规模的持续增长,对其进行预测变得日益复杂,为了提高大规模时间序列的长期预测效率,探索构建模糊信息粒的创新方法,以准确反映数据集大小和趋势信息.[方法]首先,根据模糊拓展原理,研究各种模糊信息粒,包括区间型、三角型和高斯型模糊信息粒的距离定义.随后,结合时间序列片段的中心线段和离散程度信息,引入一类新颖的模糊信息粒.这些粒子可以有效捕捉指定时间范围内时间序列的趋势信息和离散程度,进一步地提出高斯型模糊信息粒距离的函数表达式和几何解释.为了将这些粒子用于时间序列预测,设计一类模糊推理预测系统,该系统可以利用历史数据构造模糊信息粒,并从高斯型模糊信息粒序列中提取模糊推理规则.[结果]高斯型模糊信息粒距离的函数表达式具有简洁的数学表示,可以合理地反映两个高斯模糊信息粒的中心线和离散程度的差异.模糊推理预测系统可以从高斯型模糊信息粒序列中提取有效的规则,实现时间序列的长期预测.实验结果表明,结合线性高斯模糊信息粒与模糊推理系统的预测方法在均方根误差和平均绝对百分比误差方面优于其他数值预测算法和其他模糊信息粒推理方法,包括自回归模型、自回归神经网络和回归向量机等.[结论]结合线性模糊信息粒和模糊推理系统的方法可以提高时间序列长期预测的效率.基于对数据集特征的合理抽象提出了一种新颖的线性模糊信息粒,并简洁地推导出了它们的距离定义.时间序列预测的成功表明,通过巧妙地设计信息粒,能够准确捕捉数据集中的关键特征,从而提高其他数据挖掘任务的效率,例如更快的计算速度和更准确的结果. 展开更多
关键词 线性模糊信息粒 模糊推理系统 时间序列预测
下载PDF
基于多粒度时间卷积网络的超短期风功率预测
3
作者 江国乾 徐向东 +3 位作者 白佳荣 何群 谢平 单伟 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期104-111,共8页
针对传统风功率预测方法通常基于固定时间粒进行研究,但该类方法往往忽略了其他时间粒度对风功率的影响的问题,提出一种基于多粒度时间卷积网络(MGTCN)的超短期风功率预测方法,使用时间卷积网络来挖掘多粒度视角下的风力机数据特征,并... 针对传统风功率预测方法通常基于固定时间粒进行研究,但该类方法往往忽略了其他时间粒度对风功率的影响的问题,提出一种基于多粒度时间卷积网络(MGTCN)的超短期风功率预测方法,使用时间卷积网络来挖掘多粒度视角下的风力机数据特征,并设计多粒度特征融合模块来增强模型的鲁棒性,提高风功率预测精度。首先,利用随机森林算法(RF)得到与输出功率相关性较强的部分特征数据;然后,对筛选后的特征数据进行多粒度划分,通过时间卷积网络(TCN)提取各个粒度的独立特征。最后,使用挤压激励网络(SENet)对不同粒度特征进行自适应加权融合,得到最终预测值。采用中国某风场数据进行算例分析,结果表明相较于其他方法,所提方法在24步预测任务和6步预测任务上取得了最佳的预测性能,具有较高的准确性和稳定性。在24步预测任务上归一化均方根误差、归一化平均绝对值误差和决定系数指标分别为0.152、0.108和0.7214,在6步预测任务上各指标分别为0.1027,0.0683和0.8717。 展开更多
关键词 风功率 预测 随机森林 多粒度计算 时间卷积网络 挤压激励网络
下载PDF
基于离散时间量子漫步的链路预测算法
4
作者 侍伟敏 梁佳伟 +1 位作者 周艺华 杨宇光 《安徽大学学报(自然科学版)》 CAS 北大核心 2024年第2期34-39,共6页
量子漫步算法能模拟游走粒子在图上的量子相干演化,粒子的运动状态由量子态的相干叠加而成.与经典随机游走算法相比,量子漫步算法具有寻找目标节点时间少和源节点扩散至其他节点时间少的优点.提出一种基于离散时间量子漫步的链路预测(li... 量子漫步算法能模拟游走粒子在图上的量子相干演化,粒子的运动状态由量子态的相干叠加而成.与经典随机游走算法相比,量子漫步算法具有寻找目标节点时间少和源节点扩散至其他节点时间少的优点.提出一种基于离散时间量子漫步的链路预测(link predictionbased on discrete time quantum walk,简称LP-DTQW)算法.研究结果表明:相对于其他7种算法,LP-DTQW算法有更高的预测精度;LP-DTQW算法的时间复杂度远低于经典RWR(random walk with restart)链路预测算法的时间复杂度.因此,LP-DTQW算法具有更强的预测性能. 展开更多
关键词 复杂网络 链路预测 离散时间量子漫步 拓扑相似性
下载PDF
基于在线监测时间序列数据的水质预测模型研究进展
5
作者 秦艳 徐庆 +3 位作者 陈晓倩 刘振鸿 唐亦舜 高品 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第3期116-122,共7页
当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进... 当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进展,包括数据软测量、预处理方法和水质预测模型等,分析了不同水质预测模型在应用过程中存在的问题,并对未来研究方向进行了展望,以期为水质预测预警和环境监管提供技术支持和方法参考。 展开更多
关键词 水质预测模型 在线监测 时间序列分析 自回归模型 人工神经网络
下载PDF
基于改进时空图卷积网络的道路行程时间预测模型
6
作者 王忠宇 李盼归 +1 位作者 杨航 吴兵 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期1022-1029,共8页
为提高道路网行程时间预测精度,综合考虑行程时间的空间依赖性、时间依赖性和天气因素影响,提出了基于属性增强和注意力机制的时空图卷积网络模型.首先,构建属性增强单元,将行程时间和天气信息融合;然后,利用图卷积网络捕获空间依赖性,... 为提高道路网行程时间预测精度,综合考虑行程时间的空间依赖性、时间依赖性和天气因素影响,提出了基于属性增强和注意力机制的时空图卷积网络模型.首先,构建属性增强单元,将行程时间和天气信息融合;然后,利用图卷积网络捕获空间依赖性,利用门控递归单元捕获时间依赖性,并利用注意力机制增强模型对特征的学习;最后,利用该模型在真实数据集上对未来15、30、45和60 min的行程时间进行预测.结果表明:预测结果的均方根误差(RMSE)分别为0.0453、0.0456、0.0457和0.0468,与其他模型相比表现更优;考虑了时间、空间和天气因素后,相较于不考虑天气的情况,预测误差降低了约10.3%;相较于不考虑空间依赖性的情况,降低了约24.2%,表明所提模型能更好表达时空依赖性和外部条件影响. 展开更多
关键词 交通工程 行程时间预测 图卷积网络 时空依赖 天气因素
下载PDF
执行时间预测驱动的工作流作业调度
7
作者 胡亚红 邱圆圆 毛家发 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第5期228-238,共11页
针对工作流作业调度问题,提出使用关键路径法进行工作流的执行时间预测和资源分配。工作流执行时间预测算法使用并行应用有向无环图描述工作流中子作业的执行顺序。基于此顺序,为子作业进行系统资源的逻辑分配。根据子作业的特征和资源... 针对工作流作业调度问题,提出使用关键路径法进行工作流的执行时间预测和资源分配。工作流执行时间预测算法使用并行应用有向无环图描述工作流中子作业的执行顺序。基于此顺序,为子作业进行系统资源的逻辑分配。根据子作业的特征和资源分配信息,使用梯度提升决策树进行子作业执行时间预测,并计算工作流的关键路径。关键路径上所有子作业的完成时间之和即为工作流的执行时间。若预测的工作流执行时间满足用户要求,则根据子作业执行顺序和资源分配方案进行作业调度,执行工作流。对比实验表明,两个工作流的执行时间预测误差分别为5.72%和1.57%。与Spark默认调度算法相比,工作流调度算法将两个工作流的完成时间分别缩短了15.71%和15.44%。 展开更多
关键词 工作流 时间预测 关键路径 调度算法 梯度提升决策树
下载PDF
基于改进时间卷积网络与藤Copula的短期风速预测
8
作者 黄宇 张宗拾 +2 位作者 刘家兴 李旭昕 张鹏 《电力科学与工程》 2024年第7期60-69,共10页
考虑风电场相邻风机风速间以及风速与气象因素间复杂的非线性关系,提出了一种基于改进时间卷积网络与藤Copula相结合的风速预测方法。首先,利用深度残差收缩网络中存在的注意力机制及软阈值化的思想改进时间卷积网络中的残差模块,并进... 考虑风电场相邻风机风速间以及风速与气象因素间复杂的非线性关系,提出了一种基于改进时间卷积网络与藤Copula相结合的风速预测方法。首先,利用深度残差收缩网络中存在的注意力机制及软阈值化的思想改进时间卷积网络中的残差模块,并进行初步风速预测;然后,考虑到众多气象因素对风速的影响,使用核主成分分析对气象数据进行降维,在保证数据特征的同时,降低数据的复杂度;最后,利用藤Copula在描述非线性相关结构方面的优势构建修正模型,使用降维的气象数据修正初步风速预测值,得到最终的风速预测结果。实验证明,所提方法提高了短期风速预测的精度。 展开更多
关键词 风速预测 改进时间卷积网络 气象因素 核主成分分析 藤Copula
下载PDF
基于ISSA-XGBoost模型的多特征融合露天矿卡车行程时间预测
9
作者 顾清华 王燕 +1 位作者 王倩 魏瑾瑜 《有色金属(矿山部分)》 2024年第1期1-10,共10页
针对露天矿运输系统卡车行程时间预测问题,提出了一种基于特征选择及改进麻雀算法优化XGBoost的露天矿卡车行程时间预测模型。模型充分考虑了卡车特征、道路特征、气象特征以及时间特征对卡车行程时间的影响,并使用皮尔逊系数法深入分... 针对露天矿运输系统卡车行程时间预测问题,提出了一种基于特征选择及改进麻雀算法优化XGBoost的露天矿卡车行程时间预测模型。模型充分考虑了卡车特征、道路特征、气象特征以及时间特征对卡车行程时间的影响,并使用皮尔逊系数法深入分析影响因素的贡献度。针对麻雀算法中全局搜索能力薄弱的问题引入反向学习和螺旋搜索策略,以提高算法的收敛性能。最后,使用改进的麻雀算法对XGBoost的关键参数进行寻优,进而构建露天矿卡车行程时间预测模型。选取国内某大型露天矿卡车调度系统采集的数据进行仿真模拟,并将所提出模型与SVM、BP、RBF和RF等其他机器学习模型进行对比。结果表明:所提出模型的预测误差均低于其他模型,相关系数可达0.9819。开发的模型和分析结果可以极大地帮助决策者规划、运营和管理更高效的露天矿运输系统。 展开更多
关键词 行程时间预测 露天矿卡车 XGBoost 改进麻雀算法 均值滤波
下载PDF
基于模态分解与SRU网络的时间序列预测
10
作者 钱钧 何曦 +1 位作者 冯焱侠 李维勤 《自动化技术与应用》 2024年第8期99-104,共6页
时间序列预测在工业、农业、金融及军事等领域中具有重要的应用价值。为了进一步提高预测的可靠性和准确性,构建一种基于模态分解与SRU网络的杂交预测模型。首先,针对模态个数难以确定的问题,构建基于平均样本熵来确定模态个数的自适应... 时间序列预测在工业、农业、金融及军事等领域中具有重要的应用价值。为了进一步提高预测的可靠性和准确性,构建一种基于模态分解与SRU网络的杂交预测模型。首先,针对模态个数难以确定的问题,构建基于平均样本熵来确定模态个数的自适应变分模态分解(AVMD)模型,以减少不同频率上的混叠及降低随机噪声的干扰。通过在Adam算法中引入了随机调整参数,来提高SRU网络的训练速度及增强网络跳出局部最优解的能力。最后,发展一种基于AVMD与SRU网络的杂交模型。为评估提出的预测模型的可靠性和准确性,将之与一些最新预测方法做比较。电力负荷序列的实验结果表明,所提出的杂交预测模型具有较高的准确性和可靠性。 展开更多
关键词 预测 时间序列 模态分解 平均样本熵 随机调整参数 循环单元
下载PDF
顾及地球物理效应的GNSS高程时间序列AdaBoost预测和插值方法
11
作者 鲁铁定 李祯 《测绘学报》 EI CSCD 北大核心 2024年第6期1077-1085,共9页
传统的GNSS高程时间序列预测和插值方法仅考虑时间变量,具有明显的局限性。本文顾及地球物理效应的影响,通过温度、大气压强、极移等数据和GNSS高程时间序列数据构建回归问题,使用自适应提升(AdaBoost)算法建模。为了验证模型的预测和... 传统的GNSS高程时间序列预测和插值方法仅考虑时间变量,具有明显的局限性。本文顾及地球物理效应的影响,通过温度、大气压强、极移等数据和GNSS高程时间序列数据构建回归问题,使用自适应提升(AdaBoost)算法建模。为了验证模型的预测和插值性能,试验选取4个GNSS站的高程时间序列进行分析。建模试验表明,相较于Prophet模型,AdaBoost模型的拟合精度提升了约35%;预测结果表明,在12个月的预测周期内,AdaBoost模型在4个GNSS站的MAE值为4.0~4.5 mm,RMSE值约为5.0~6.0 mm;插值试验表明,相较于三次样条插值方法,AdaBoost插值模型的精度约提升了15%~28%。预测和插值试验表明,顾及地球物理效应的AdaBoost模型可以应用于GNSS高程时间序列预测与插值。 展开更多
关键词 GNSS高程时间序列 地球物理效应 预测 插值 自适应提升算法
下载PDF
某三甲中医医院ICU感染发生率时间序列分析及趋势预测
12
作者 杨丽萍 程立军 +5 位作者 李潇 杨雳畯 丁淑玉 王靖研 黄文莉 毛宝宏 《西部中医药》 2024年第9期78-82,共5页
目的:了解某三甲中医医院ICU感染发生率的时序分布特征,预测其发生规律和趋势,为中医医院ICU感染监测提供数据支持。方法:收集某三甲中医医院2019年1月至2024年2月ICU医院感染数据。利用求和自回归滑动平均模型(Autoregressive integrat... 目的:了解某三甲中医医院ICU感染发生率的时序分布特征,预测其发生规律和趋势,为中医医院ICU感染监测提供数据支持。方法:收集某三甲中医医院2019年1月至2024年2月ICU医院感染数据。利用求和自回归滑动平均模型(Autoregressive integrated moving average,ARIMA)对ICU感染发生趋势进行预测并评价其预测效果。结果:2019年1月至2024年2月某三甲中医医院ICU医院感染发生率为2.61%(232/8895);时间序列分析显示,ICU医院感染发生率波动较大且存在一定周期性,总体呈下降趋势。根据赤池信息准则和贝叶斯信息准则拟合,ARIMA(0,1,1)为最优预测模型。经参数估计与效果评价,感染发生率实际值均在预测值95%可信区间内,模型预测效果较好。结论:运用ARIMA对某三甲中医医院ICU医院感染发生率的预测结果良好,可显示其长期发生规律与趋势,能为医院感染监测提供科学依据。 展开更多
关键词 医院感染 重症监护病房 求和自回归滑动平均模型 时间序列 趋势预测
下载PDF
基于时间卷积网络的机床齿轮箱轴承剩余寿命预测
13
作者 姜广君 段政伟 +1 位作者 穆东明 杨金森 《机床与液压》 北大核心 2024年第12期224-230,共7页
基于深度神经网络的RUL预测模型结构比较复杂,不能很好地满足中长期预测任务的要求。为了更好地利用时间信息,设计一种基于时间卷积网络(TCN)的轴承RUL预测模型。以振动信号的频谱特征作为输入,利用因果膨胀卷积结构提取频域特征并捕获... 基于深度神经网络的RUL预测模型结构比较复杂,不能很好地满足中长期预测任务的要求。为了更好地利用时间信息,设计一种基于时间卷积网络(TCN)的轴承RUL预测模型。以振动信号的频谱特征作为输入,利用因果膨胀卷积结构提取频域特征并捕获长期依赖,从而实现对轴承准确的RUL预测。为了进一步说明所提方法的优越性,将所提方法与卷积神经网络(CNN)、门控循环单元(GRU)进行了对比。结果表明:所提出的TCN模型的RUL预测精度优于其他现有方法,具有较高的精度。 展开更多
关键词 机床齿轮箱轴承 时间卷积网络 时间序列 剩余寿命预测
下载PDF
基于坐标时间序列的地心运动分析与预测
14
作者 朱新慧 王刃 +1 位作者 贾彦锋 柯能 《海洋测绘》 CSCD 北大核心 2024年第1期36-42,共7页
地心运动会影响地球参考框架原点的准确性,是地球参考框架进行非线性维持必须考虑的因素之一,因此提出对地心运动进行多尺度的建模和预测,以实现毫米级地球参考框架的建立和维持。采用网平移法计算的地心运动、全球地球物理流体中心(glo... 地心运动会影响地球参考框架原点的准确性,是地球参考框架进行非线性维持必须考虑的因素之一,因此提出对地心运动进行多尺度的建模和预测,以实现毫米级地球参考框架的建立和维持。采用网平移法计算的地心运动、全球地球物理流体中心(global geophysical fluids center,GGFC)和国际GNSS服务(international gnss service,IGS)第三次重处理(IGSR03)提供的3组地心运动数据,首先对其一致性和差异进行了分析,然后分别利用谐波模型和Diff-LSTM模型对地心运动进行了长期和短期的建模与预测,结果显示,GGFC地心运动的预测精度优于1.5 mm,而Diff-LSTM模型的地心运动预测结果在短期内优于谐波模型,当预测步长为17时,GGFC和IGSR03的地心运动预测精度均能达到甚至优于1 mm。表明地心运动的预测精度能够满足基于地球质量中心(center of mass of the total earth system,CM)的瞬时地球参考框架的建立与维持。 展开更多
关键词 地球参考框架 地心运动预测 坐标时间序列 谐波模型 Diff-LSTM模型
下载PDF
融合改进NBEATSx和时间注意力机制的空气污染预测
15
作者 李杰 王占刚 《陕西科技大学学报》 北大核心 2024年第5期198-205,共8页
针对现有空气污染预测存在结构复杂、对多元变量与不同时间步间依赖关系提取不充分和多步预测精度低的问题,引入了β分布和非线性动态控制函数改进星鸦优化算法(INOA),优化NBEATSx模型参数,提高收敛精度;并融合时间模式注意力机制(TPA)... 针对现有空气污染预测存在结构复杂、对多元变量与不同时间步间依赖关系提取不充分和多步预测精度低的问题,引入了β分布和非线性动态控制函数改进星鸦优化算法(INOA),优化NBEATSx模型参数,提高收敛精度;并融合时间模式注意力机制(TPA)为不同时间尺度的多外生变量自适应分配权重,再结合预测因子获取时间模式关系.利用所提模型对北京地区的PM2.5进行预测,与传统模型相比精度提高超过18.45%,为空气污染预测提供了一种新方法. 展开更多
关键词 空气污染预测 时间模式注意力机制 星鸦优化算法 神经基扩展分析网络
下载PDF
进港航班滑入时间预测
16
作者 唐小卫 丁叶 +2 位作者 张生润 任思豫 吴佳琦 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2218-2224,共7页
准确预测进港航班滑入时间对合理调配航班保障资源和提高机场场面运行效率具有重要意义,可有效克服各大机场粗放式预测航班进港时刻的不足,为此提出一种基于机器学习模型的滑入时间预测方法。以首都机场为具体研究对象,分析进港航班滑... 准确预测进港航班滑入时间对合理调配航班保障资源和提高机场场面运行效率具有重要意义,可有效克服各大机场粗放式预测航班进港时刻的不足,为此提出一种基于机器学习模型的滑入时间预测方法。以首都机场为具体研究对象,分析进港航班滑入时间的影响因素并构建特征集;将线性回归、K-最近邻、支持向量机、决策树、随机森林和梯度提升回归树6种在滑出时间预测方面得到广泛应用的机器学习模型用于进港航班滑入时间预测。研究结果表明:在误差范围±3 min内6种机器学习模型的预测精度均超过90%,表明特征集的构建和模型的选择是有效的;综合预测性能与模型拟合评估结果,梯度提升回归树模型的预测效果最好;在梯度提升回归树模型上场面流量特征的贡献度最大,新引入的跨区特征对预测模型的贡献度超过了大部分传统特征。 展开更多
关键词 航空运输 机场场面运行 滑行时间预测 机器学习 梯度提升回归树
下载PDF
基于改进时间卷积网络的微电网超短期负荷预测
17
作者 王印松 吕率豪 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期255-263,共9页
为了提高微电网中用电负荷超短期预测的准确性,对时间卷积网络进行特征增强和注意力增强改进,将时间卷积网络中的一维因果膨胀卷积替换为二维卷积,同时利用时间模式注意力机制对时间卷积网络的隐藏层加权处理,提取负荷的多维特征,挖掘... 为了提高微电网中用电负荷超短期预测的准确性,对时间卷积网络进行特征增强和注意力增强改进,将时间卷积网络中的一维因果膨胀卷积替换为二维卷积,同时利用时间模式注意力机制对时间卷积网络的隐藏层加权处理,提取负荷的多维特征,挖掘序列中存在的潜藏联系。根据改进的方法建立预测模型并进行对比实验以验证方法的有效性,能够对用电负荷的不确定性进行有效的处理,拓宽特征向量的维度,有效捕捉负荷序列中与时间有关的特征,提高用电负荷的预测精度。 展开更多
关键词 负荷预测 微电网 卷积神经网络 特征增强 时间模式注意力机制
下载PDF
基于时间序列分析的港口货物吞吐量预测研究
18
作者 高海燕 《北方经贸》 2024年第5期61-65,共5页
港口货物吞吐量是衡量企业生产经营活动的重要依据,体现地区的经济活力与国际贸易潜力。为更准确地预测港口货物吞吐量,本文针对上海港2013年至2022年间集装箱吞吐量变化特征进行量化分析,使用时间序列研究方法对上海吞吐量发展趋势作... 港口货物吞吐量是衡量企业生产经营活动的重要依据,体现地区的经济活力与国际贸易潜力。为更准确地预测港口货物吞吐量,本文针对上海港2013年至2022年间集装箱吞吐量变化特征进行量化分析,使用时间序列研究方法对上海吞吐量发展趋势作出精准化预测。对时间序列的平稳性与模型合理性进行进一步验证,减少时间序列历史数据非线性、非平稳性特点产生的预测误差,提升港口吞吐量预测的准确性和科学性,为实现生产效率与资金投入的科学化统筹提供基础数据支撑。 展开更多
关键词 时间序列分析 货物吞吐量预测 上海港
下载PDF
基于非线性目标函数的时间卷积网络RUL预测
19
作者 刘斌 许靖 +2 位作者 霍美玲 崔学英 谢秀峰 《太原科技大学学报》 2024年第2期211-216,共6页
机械设备剩余使用寿命(RUL)预测是系统维护策略的重要组成部分。在建立深度学习预测方法的目标函数的过程中,退化模型通常以分段线性函数的形式建立,异常值对预测结果的影响很容易被放大。提出了一种基于分段非线性退化的时间卷积网络... 机械设备剩余使用寿命(RUL)预测是系统维护策略的重要组成部分。在建立深度学习预测方法的目标函数的过程中,退化模型通常以分段线性函数的形式建立,异常值对预测结果的影响很容易被放大。提出了一种基于分段非线性退化的时间卷积网络回归模型。非线性函数能较好地描述传感器的退化趋势,减少线性模型预测引起的系统偏差。在美国航天局公布的涡扇发动机(C-MAPSS)数据集上验证了该模型的有效性,实验表明该模型比目标函数为分段线性函数的模型具有更低的误差,优于现有的一些预测方法。 展开更多
关键词 剩余使用寿命预测 深度学习 非线性目标函数 时间卷积网络
下载PDF
基于HPO-LSTM的公交周转时间预测
20
作者 张萌萌 王成霄 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第8期43-50,共8页
公交周转时间的准确预测是公交智能排班的基础和前提,是制定行车时刻表的关键。为提高公交周转时间的预测精度,提出了基于猎人猎物优化长短时记忆神经网络(HPO-LSTM)的公交周转时间预测模型,将长短时记忆神经网络(LSTM)中的超参数(隐含... 公交周转时间的准确预测是公交智能排班的基础和前提,是制定行车时刻表的关键。为提高公交周转时间的预测精度,提出了基于猎人猎物优化长短时记忆神经网络(HPO-LSTM)的公交周转时间预测模型,将长短时记忆神经网络(LSTM)中的超参数(隐含层节点数、迭代循环数以及初始学习率)映射为猎人猎物优化算法(HPO)种群的位置;以LSTM模型预测值与真实值产生的均方根误差E_(RMS)作为种群适应度函数,优化种群位置,实现LSTM神经网络超参数寻优;用最优超参数构建LSTM神经网络,进行公交周转时间预测。采用某市公交1号线数据对模型进行验证分析,结果表明:相比于BP、LSTM、FA-BP、HPO-BP模型,HPO-LSTM模型平均绝对百分比误差E_(MAP)分别降低10.44%、4.00%、3.61%、2.04%。 展开更多
关键词 交通运输工程 公共交通 周转时间预测 猎人猎物优化算法 长短时记忆神经网络
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部