To simplify the complicated design process of deployable/retractable structures, a new design process is developed. The process is divided into three phases: the concept design phase, the model phase and the optimiza...To simplify the complicated design process of deployable/retractable structures, a new design process is developed. The process is divided into three phases: the concept design phase, the model phase and the optimization phase. In each phase, different parameter targets have to be fulfilled. According to three phases, a deployable/retractable mast composed of four right triangle prism modules in the longitudinal direction is designed. It can be deployed and folded simultaneously by the linear movements of sleeve-joints. The deployable and retractable movement of the mast is analyzed and key joint forms are designed. Then bar diameters and joint forms are modified based on mast structural mechanics characteristics in the optimization phase. Finally a 1:1 scaled model mast is built to verify the design and the optimization. Analytical results show that the model mast has the advantages of simple locking mechanism, fewer types of joints and bars, so it can be easily manufactured.展开更多
A 3D synchronism deployable antenna was designed, analyzed, and manufactured by our research group. This an-tenna consists of tetrahedral elements from central element. Because there are springs at the ends of some of...A 3D synchronism deployable antenna was designed, analyzed, and manufactured by our research group. This an-tenna consists of tetrahedral elements from central element. Because there are springs at the ends of some of the rods, spider joints are applied. For analysis purpose, the structure is simplified and modelled by using 2D beam elements that have no bending stiffness. Displacement vectors are defined to include two translational displacements and one torsional displacement. The stiff-ness matrix derived by this method is relatively simple and well defined. The analysis results generated by using software de-veloped by our research group agreed very well with available test data.展开更多
文摘To simplify the complicated design process of deployable/retractable structures, a new design process is developed. The process is divided into three phases: the concept design phase, the model phase and the optimization phase. In each phase, different parameter targets have to be fulfilled. According to three phases, a deployable/retractable mast composed of four right triangle prism modules in the longitudinal direction is designed. It can be deployed and folded simultaneously by the linear movements of sleeve-joints. The deployable and retractable movement of the mast is analyzed and key joint forms are designed. Then bar diameters and joint forms are modified based on mast structural mechanics characteristics in the optimization phase. Finally a 1:1 scaled model mast is built to verify the design and the optimization. Analytical results show that the model mast has the advantages of simple locking mechanism, fewer types of joints and bars, so it can be easily manufactured.
基金Project (No. 863-2-4) supported by the National Basic Research Program (863) of China
文摘A 3D synchronism deployable antenna was designed, analyzed, and manufactured by our research group. This an-tenna consists of tetrahedral elements from central element. Because there are springs at the ends of some of the rods, spider joints are applied. For analysis purpose, the structure is simplified and modelled by using 2D beam elements that have no bending stiffness. Displacement vectors are defined to include two translational displacements and one torsional displacement. The stiff-ness matrix derived by this method is relatively simple and well defined. The analysis results generated by using software de-veloped by our research group agreed very well with available test data.