The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production ...The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneit3 revealed by different data sets, such as 3D seismic and microseismic data, can more full3 reflect the reservoir properties and is helpful to optimize the drilling and completioT programs. First, we predict the local stress direction and open or close status of the natura fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoi heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affec hydraulic fracture propagation are predicted by integrating the seismic curvature attribute anc ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assis in designing the fracture program and adjusting stimulation parameters. Finally, we interpre the reason why sand plugs will occur during the stimulation process by the integration of 3E seismic interpretation and microseismic imaging results, which further explain the hydraulic fracure propagation controlling factors and open or closed state of natural fractures in tigh sand reservoirs.展开更多
The sphere is a common object in uncountable engineering problems, which not only appears in structural elements like domes but also in thousands of mechanisms normally used in diverse kinds of machines. To design, ca...The sphere is a common object in uncountable engineering problems, which not only appears in structural elements like domes but also in thousands of mechanisms normally used in diverse kinds of machines. To design, calculate and analyze the behaviour on service of spherical elements, it is essential to have a good method to create an ordered group of discrete points of the spherical surface from the parametric equations commonly used to define the sphere continuously. One of the best known and widely used in high-level programming environment is MATLAB. The programming language has thousands of functions, lots of them specially designed for engineering processes. One of these functions generates a sphere knowing a given radius and shows the result. Nevertheless, this function is really imprecise because it is based on parallels and meridians besides the obtained vertices do not keep a constant distance each other. This causes the fact that it would be appropriate to design a new function to generate accurate discrete approximations of the sphere. The objective of this paper is to create a low-level function in MATLAB to obtain a discrete sphere with high regularity and high approximation in order to provide a good base to solve sphere-based engineering problems. To ensure a perfect symmetry and high regularity platonic bodies, MATLAB will be used as a base to divide the continuous spherical surface in a finite number of regular triangles. The obtained results for the different seed bodies will be represented graphically and compared to each other. The accuracy of each method will be evaluated and compared too.展开更多
The excavated height of the left bank slope of the diversion power system intake in Jinchuan hydropower station is about 16o m. The stability and safety of the slope during construction and its operation/utilization b...The excavated height of the left bank slope of the diversion power system intake in Jinchuan hydropower station is about 16o m. The stability and safety of the slope during construction and its operation/utilization become one of the most important geological engineering problems. At the same time, it is also crucial to select a safe and economic excavation gradient for the construction. We studied the problem of how to select a safe and economic slope ratio by analyzing the geological condition of the high slope, including the lithology, slope structure, structural surface and their combinations, rock weathering and unloading, hydrology, and the natural gradient. The study results showed that the use of an excavation gradient larger than the gradient observed during site investigation and the gradient recommended in standards and field practice manuals is feasible. Then, we used the finite element method and rigid limit equilibrium method to evaluate the stability of the excavation slope under natural, rainstorm and earthquake conditions. The calculated results showed that the excavated slope only has limited failure, but its stability is greatly satisfactory. The research findings can be useful in excavation and slope stabilization projects.展开更多
Comparative space-time thinking lies at the heart of spatiotemporally integrated social sciences. The multiple dimensions and scales of socioeconomic dynamics pose numerous challenges for the application and evaluatio...Comparative space-time thinking lies at the heart of spatiotemporally integrated social sciences. The multiple dimensions and scales of socioeconomic dynamics pose numerous challenges for the application and evaluation of public policies in the comparative context. At the same time, social scientists have been slow to adopt and implement new spatiotemporally explicit methods of data analysis due to the lack of extensible software packages, which becomes a major impediment to the promotion of spatiotemporal thinking. The proposed framework will address this need by developing a set of research questions based on space-time-distributional features of socioeconomic datasets. The authors aim to develop, evaluate, and implement this framework in an open source toolkit to comprehensively quantify the changes and level of hidden variation of space-time datasets across scales and dimensions. Free access to the source code allows a broader community to incorporate additional advances in perspectives and methods, thus facilitating interdisciplinary collaboration. Being written in Python, it is entirely cross-platform, lowering transmission costs in research and education.展开更多
文摘The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneit3 revealed by different data sets, such as 3D seismic and microseismic data, can more full3 reflect the reservoir properties and is helpful to optimize the drilling and completioT programs. First, we predict the local stress direction and open or close status of the natura fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoi heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affec hydraulic fracture propagation are predicted by integrating the seismic curvature attribute anc ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assis in designing the fracture program and adjusting stimulation parameters. Finally, we interpre the reason why sand plugs will occur during the stimulation process by the integration of 3E seismic interpretation and microseismic imaging results, which further explain the hydraulic fracure propagation controlling factors and open or closed state of natural fractures in tigh sand reservoirs.
文摘The sphere is a common object in uncountable engineering problems, which not only appears in structural elements like domes but also in thousands of mechanisms normally used in diverse kinds of machines. To design, calculate and analyze the behaviour on service of spherical elements, it is essential to have a good method to create an ordered group of discrete points of the spherical surface from the parametric equations commonly used to define the sphere continuously. One of the best known and widely used in high-level programming environment is MATLAB. The programming language has thousands of functions, lots of them specially designed for engineering processes. One of these functions generates a sphere knowing a given radius and shows the result. Nevertheless, this function is really imprecise because it is based on parallels and meridians besides the obtained vertices do not keep a constant distance each other. This causes the fact that it would be appropriate to design a new function to generate accurate discrete approximations of the sphere. The objective of this paper is to create a low-level function in MATLAB to obtain a discrete sphere with high regularity and high approximation in order to provide a good base to solve sphere-based engineering problems. To ensure a perfect symmetry and high regularity platonic bodies, MATLAB will be used as a base to divide the continuous spherical surface in a finite number of regular triangles. The obtained results for the different seed bodies will be represented graphically and compared to each other. The accuracy of each method will be evaluated and compared too.
基金financially supported by Chinese National Natural Science Foundation (Grant No. 41072229)State Key Laboratory of Hydraulics and Mountain River Engineering (Sichuan University) open fund (Grant No. 201110)Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education and National Engineering Research Center for Inland Waterway Regulation (Chongqing Jiaotong University) open fund (Grant No. SLK2011B04)
文摘The excavated height of the left bank slope of the diversion power system intake in Jinchuan hydropower station is about 16o m. The stability and safety of the slope during construction and its operation/utilization become one of the most important geological engineering problems. At the same time, it is also crucial to select a safe and economic excavation gradient for the construction. We studied the problem of how to select a safe and economic slope ratio by analyzing the geological condition of the high slope, including the lithology, slope structure, structural surface and their combinations, rock weathering and unloading, hydrology, and the natural gradient. The study results showed that the use of an excavation gradient larger than the gradient observed during site investigation and the gradient recommended in standards and field practice manuals is feasible. Then, we used the finite element method and rigid limit equilibrium method to evaluate the stability of the excavation slope under natural, rainstorm and earthquake conditions. The calculated results showed that the excavated slope only has limited failure, but its stability is greatly satisfactory. The research findings can be useful in excavation and slope stabilization projects.
基金Under the auspices of Humanities and Social Science Research,Major Project of Chinese Ministry of Education(No.13JJD790008)Basic Research Funds of National Higher Education Institutions of China(No.2722013JC030)+2 种基金Zhongnan University of Economics and Law 2012 Talent Grant(No.31541210702)Key Research Program of Chinese Academy of Sciences(No.KZZD-EW-06-03,KSZD-EW-Z-021-03)National Key Science and Technology Support Program of China(No.2012BAH35B03)
文摘Comparative space-time thinking lies at the heart of spatiotemporally integrated social sciences. The multiple dimensions and scales of socioeconomic dynamics pose numerous challenges for the application and evaluation of public policies in the comparative context. At the same time, social scientists have been slow to adopt and implement new spatiotemporally explicit methods of data analysis due to the lack of extensible software packages, which becomes a major impediment to the promotion of spatiotemporal thinking. The proposed framework will address this need by developing a set of research questions based on space-time-distributional features of socioeconomic datasets. The authors aim to develop, evaluate, and implement this framework in an open source toolkit to comprehensively quantify the changes and level of hidden variation of space-time datasets across scales and dimensions. Free access to the source code allows a broader community to incorporate additional advances in perspectives and methods, thus facilitating interdisciplinary collaboration. Being written in Python, it is entirely cross-platform, lowering transmission costs in research and education.