The subject of this work is the assessment on the stability of an excavated high slope in order to insure the security of the building site adjacent to the slope, which is frequently encountered in town construction i...The subject of this work is the assessment on the stability of an excavated high slope in order to insure the security of the building site adjacent to the slope, which is frequently encountered in town construction in mountainous areas due to terrain limit. On the base of some typical engineering cases in Chongqing, several crucial problems on security assessment of building site adjacent to an excavated high slope, including the natural geological conditions and man-destroyed degree, engineering environment, potential failure pattern of the high slope, calculation parameters and analysis methods, are roundly discussed. It is demonstrated that the conclusion of security assessment can be determined according to the aspects above-mentioned, and the security assessment is one of the fundamental data to insure the safety of the related construction, site and buildings.展开更多
To deal with the construction difficulties of Xiangjiaba underground hydropower station,such as complex geological conditions,narrow rock bench,high loading,high quality requirements and urgent time limit,the project ...To deal with the construction difficulties of Xiangjiaba underground hydropower station,such as complex geological conditions,narrow rock bench,high loading,high quality requirements and urgent time limit,the project adopted the concept of precision blasting.The explosive energy and rock mass fragmentation were well controlled by taking reasonable excavation sequence,designing steel pipe drilling frame,the additional techniques of double layer smooth blasting,evenly micro charge,staggered arrangement of boreholes and pre-stressed anchors.These technologies ensured the excavation quality of the rock face beam,achieving successful blasting results:Semi hole ratio was 100%in Ⅱ surrounding rock,99.2%in Ⅲ surrounding rock and 90%~ 97.3%in Ⅳ surrounding rock;underbreak was avoided and the average backbreak was only2.9 cm;the unevenness was 0 ~ 4 cm;the influence depth of blasting and unloading was 0.2 ~ 0.7 cm.展开更多
Long tunnel excavation with tunnel boring ily affected by uncertainties and needs to be adjusted machine (TBM) is a complex and stochastic process. It is eas- according to specific geological conditions in different...Long tunnel excavation with tunnel boring ily affected by uncertainties and needs to be adjusted machine (TBM) is a complex and stochastic process. It is eas- according to specific geological conditions in different tunnel sections, which makes the construction scheduling and management difficult. Based on the rock mass classification, this paper estimates the penetration rate. Using the rate, a cyclic network simulation (CYCLONE) model of TBM boring system is established, and the advance rates under different geological conditions are determined. Then, the impact of different cutter head thrust, which is chosen in reasonable range according to previous experiences, on pro- ject schedule is analyzed. Moreover, the simulation model of mucking system is built to determine the number of muck trains and rail intersections reasonably, regarding the efficiency of muck loading and material transporting. Based on the interaction and interrelation between TBM boring system and mucking system, the combined CY- CLONE model for the entire tunneling process is established. Then reasonable construction schedule, the utilization rate of working resources, and the probability of project completion are obtained through the model programming. At last, a project application shows the feasibility of the presented method.展开更多
Since different underground engineering contains different geological conditions,structure and excavation methods,their disturbing degree on the ground also differs,but ground surface settlement caused by excavation h...Since different underground engineering contains different geological conditions,structure and excavation methods,their disturbing degree on the ground also differs,but ground surface settlement caused by excavation has one common point that they will form a ground surface settlement curve.Based on data statistical analysis,the article puts forward the relationship between point of inflection in digging tunnels with shallowburied method and the span of tunnel excavation against typical geological conditions in Changchun so as to predict the impact of tunnel excavation and improve reasonable ground surface settlement control standard.Research result will be useful for study on ground surface control standard in digging tunnels with shallow-buried method and setting settlement standard.展开更多
As the most important performance,compliance of shield tunneling machines(STM) is defined as the capability to accommodate the sudden change of the load induced by the variable geological conditions during excavation....As the most important performance,compliance of shield tunneling machines(STM) is defined as the capability to accommodate the sudden change of the load induced by the variable geological conditions during excavation.Owing to the different requirements of the compliant tasks,the existing methods in the robotic field cannot be utilized in the analysis and design of the mechanical system of shield tunneling machines.In this paper,based on the stiffness of the mechanical system and the equivalent contact stiffness of the tunnel face,the tunneling interface-matching index(IMI) is proposed to evaluate the compliance of the machine.The IMI is defined as a metric to describe the coincidence of the stiffness curves of the mechanical system and the tunnel face.Moreover,a tunneling case is investigated in the paper as an example to expound the validation of IMI and the analytical process.In conclusion,the IMI presented here can be served as an appraisement of the capability in conforming to the load fluctuation,and give instructions for the design of the thrust system of shield tunneling machines.展开更多
文摘The subject of this work is the assessment on the stability of an excavated high slope in order to insure the security of the building site adjacent to the slope, which is frequently encountered in town construction in mountainous areas due to terrain limit. On the base of some typical engineering cases in Chongqing, several crucial problems on security assessment of building site adjacent to an excavated high slope, including the natural geological conditions and man-destroyed degree, engineering environment, potential failure pattern of the high slope, calculation parameters and analysis methods, are roundly discussed. It is demonstrated that the conclusion of security assessment can be determined according to the aspects above-mentioned, and the security assessment is one of the fundamental data to insure the safety of the related construction, site and buildings.
文摘To deal with the construction difficulties of Xiangjiaba underground hydropower station,such as complex geological conditions,narrow rock bench,high loading,high quality requirements and urgent time limit,the project adopted the concept of precision blasting.The explosive energy and rock mass fragmentation were well controlled by taking reasonable excavation sequence,designing steel pipe drilling frame,the additional techniques of double layer smooth blasting,evenly micro charge,staggered arrangement of boreholes and pre-stressed anchors.These technologies ensured the excavation quality of the rock face beam,achieving successful blasting results:Semi hole ratio was 100%in Ⅱ surrounding rock,99.2%in Ⅲ surrounding rock and 90%~ 97.3%in Ⅳ surrounding rock;underbreak was avoided and the average backbreak was only2.9 cm;the unevenness was 0 ~ 4 cm;the influence depth of blasting and unloading was 0.2 ~ 0.7 cm.
基金Supported by National Natural Science Foundation of China (No.50709024)Program for New Century Excellent Talents in University (No. NCET-08-0391)
文摘Long tunnel excavation with tunnel boring ily affected by uncertainties and needs to be adjusted machine (TBM) is a complex and stochastic process. It is eas- according to specific geological conditions in different tunnel sections, which makes the construction scheduling and management difficult. Based on the rock mass classification, this paper estimates the penetration rate. Using the rate, a cyclic network simulation (CYCLONE) model of TBM boring system is established, and the advance rates under different geological conditions are determined. Then, the impact of different cutter head thrust, which is chosen in reasonable range according to previous experiences, on pro- ject schedule is analyzed. Moreover, the simulation model of mucking system is built to determine the number of muck trains and rail intersections reasonably, regarding the efficiency of muck loading and material transporting. Based on the interaction and interrelation between TBM boring system and mucking system, the combined CY- CLONE model for the entire tunneling process is established. Then reasonable construction schedule, the utilization rate of working resources, and the probability of project completion are obtained through the model programming. At last, a project application shows the feasibility of the presented method.
文摘Since different underground engineering contains different geological conditions,structure and excavation methods,their disturbing degree on the ground also differs,but ground surface settlement caused by excavation has one common point that they will form a ground surface settlement curve.Based on data statistical analysis,the article puts forward the relationship between point of inflection in digging tunnels with shallowburied method and the span of tunnel excavation against typical geological conditions in Changchun so as to predict the impact of tunnel excavation and improve reasonable ground surface settlement control standard.Research result will be useful for study on ground surface control standard in digging tunnels with shallow-buried method and setting settlement standard.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2007CB714003)the National Natural Science Foundation of China (Grant Nos. 51075259 and 50905108)the Program for New Century Excellent Talents in University (Grant No.NCET-10-0579)
文摘As the most important performance,compliance of shield tunneling machines(STM) is defined as the capability to accommodate the sudden change of the load induced by the variable geological conditions during excavation.Owing to the different requirements of the compliant tasks,the existing methods in the robotic field cannot be utilized in the analysis and design of the mechanical system of shield tunneling machines.In this paper,based on the stiffness of the mechanical system and the equivalent contact stiffness of the tunnel face,the tunneling interface-matching index(IMI) is proposed to evaluate the compliance of the machine.The IMI is defined as a metric to describe the coincidence of the stiffness curves of the mechanical system and the tunnel face.Moreover,a tunneling case is investigated in the paper as an example to expound the validation of IMI and the analytical process.In conclusion,the IMI presented here can be served as an appraisement of the capability in conforming to the load fluctuation,and give instructions for the design of the thrust system of shield tunneling machines.