Hydropower development in Xizang(Tibet) Autonomous Region plays a vital role in co-control of local air pollutants and greenhouse gas(GHG) in China. According to emission factors of local air pollutants and GHG of coa...Hydropower development in Xizang(Tibet) Autonomous Region plays a vital role in co-control of local air pollutants and greenhouse gas(GHG) in China. According to emission factors of local air pollutants and GHG of coal-fired power industry in different hydropower service regions, we estimate the effect and synergy of local air pollutants and GHG reduction achieved by hydropower development in Tibet, examine the main factors constraining the effect and synergy, using correlation analysis and multiple regression analysis. The results show that: 1) During the period from 2006 to 2012, the effect of local air pollutants and GHG reduction achieved by hydropower development in Tibet decreased as a whole, while the synergy increased first and decreased afterwards. 2) The effect and synergy of local air pollutants and GHG reduction achieved by hydropower development in Tibet vary significantly across different hydropower service regions. The effect based on emission levels of Central China power grid(CCPG) and Northwest China power grid(NCPG) was more significant than that based on emission level of national power grid(NPG) from 2006 to 2012, and the synergy based on emission levels of CCPG and NCPG was also more significant than that based on emission level of NPG from 2010 to 2012. 3) The main factors constraining the effect and synergy based on emission levels of NCPG and CCPG included SO2 removal rate and NOx removal rate, the effect and synergy based on emission level of NPG was mainly influenced by net coal consumption rate. 4) Transferring hydropower from Tibet to NCPG and CCPG, and substituting local coal-fired power with hydropower can greatly help to co-control local air pollutants and GHG, transform the emission reduction pattern of the power industry and optimize energy structure.展开更多
Utilization of biochar at high application rates can increase soil C and crop yields, decrease greenhouse gas emissions and reduce nutrient run-off from soils. However, the high application rate of 10 t ha-1 may not r...Utilization of biochar at high application rates can increase soil C and crop yields, decrease greenhouse gas emissions and reduce nutrient run-off from soils. However, the high application rate of 10 t ha-1 may not return a profit to the farmer due to the high cost of biochar. In this study biochar was modified through pre-treating the biomass and post-treating with phosphoric acid, minerals and different chemical fertilisers to study the effects of two new enhanced biochar fertilisers on the yield and quality of green pepper in a field experiment with 5 fertilisation treatments and 3 replications. The two new biochar fertilisers significantly (P 〈 0.05) increased the yield of green pepper (11.33-11.47 t ha-l), compared with the conventional chemical fertiliser (9.72 t ha-l). The biochar fertiliser treatments improved the vitamin C content of green pepper from 236.99 to 278.28 mg kg-1, and also significantly (P 〈 0.05) reduced the nitrate content from 132.32 to 101.92 mg kg-1, compared with chemical fertiliser. This study indicated that, compared to the use of conventional chemical fertiliser, all of the biochar fertiliser treatments could significantly improve the yield and quality of green pepper.展开更多
基金Under the auspices of State Environmental Protection Commonweal Special Program of China(No.201209032)National Natural Science Foundation of China(No.71503118)Basic Research Foundation of National Commonweal Research Institute(No.2013012)
文摘Hydropower development in Xizang(Tibet) Autonomous Region plays a vital role in co-control of local air pollutants and greenhouse gas(GHG) in China. According to emission factors of local air pollutants and GHG of coal-fired power industry in different hydropower service regions, we estimate the effect and synergy of local air pollutants and GHG reduction achieved by hydropower development in Tibet, examine the main factors constraining the effect and synergy, using correlation analysis and multiple regression analysis. The results show that: 1) During the period from 2006 to 2012, the effect of local air pollutants and GHG reduction achieved by hydropower development in Tibet decreased as a whole, while the synergy increased first and decreased afterwards. 2) The effect and synergy of local air pollutants and GHG reduction achieved by hydropower development in Tibet vary significantly across different hydropower service regions. The effect based on emission levels of Central China power grid(CCPG) and Northwest China power grid(NCPG) was more significant than that based on emission level of national power grid(NPG) from 2006 to 2012, and the synergy based on emission levels of CCPG and NCPG was also more significant than that based on emission level of NPG from 2010 to 2012. 3) The main factors constraining the effect and synergy based on emission levels of NCPG and CCPG included SO2 removal rate and NOx removal rate, the effect and synergy based on emission level of NPG was mainly influenced by net coal consumption rate. 4) Transferring hydropower from Tibet to NCPG and CCPG, and substituting local coal-fired power with hydropower can greatly help to co-control local air pollutants and GHG, transform the emission reduction pattern of the power industry and optimize energy structure.
基金financially supported by the Ministry of Science and Technology of China (Nos.2013GB23600666 and 2013BAD11B00)funded by the Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization,China+1 种基金supported by the grant of the Australian Research Council (No.LP120200418)Renewed Carbon Pty Ltd.,Australia and the project of DAFF Carbon Farming Futures-Filling the Research Gap,Australia (No.RG134978)
文摘Utilization of biochar at high application rates can increase soil C and crop yields, decrease greenhouse gas emissions and reduce nutrient run-off from soils. However, the high application rate of 10 t ha-1 may not return a profit to the farmer due to the high cost of biochar. In this study biochar was modified through pre-treating the biomass and post-treating with phosphoric acid, minerals and different chemical fertilisers to study the effects of two new enhanced biochar fertilisers on the yield and quality of green pepper in a field experiment with 5 fertilisation treatments and 3 replications. The two new biochar fertilisers significantly (P 〈 0.05) increased the yield of green pepper (11.33-11.47 t ha-l), compared with the conventional chemical fertiliser (9.72 t ha-l). The biochar fertiliser treatments improved the vitamin C content of green pepper from 236.99 to 278.28 mg kg-1, and also significantly (P 〈 0.05) reduced the nitrate content from 132.32 to 101.92 mg kg-1, compared with chemical fertiliser. This study indicated that, compared to the use of conventional chemical fertiliser, all of the biochar fertiliser treatments could significantly improve the yield and quality of green pepper.