Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads wh...Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.展开更多
In this paper,the hydrodynamically generated noise by the flow over an open cavity is studied.First,aeroacoustic theories and computational aeroacoustic(CAA) methodologies are reviewed in light of hydrodynamic acousti...In this paper,the hydrodynamically generated noise by the flow over an open cavity is studied.First,aeroacoustic theories and computational aeroacoustic(CAA) methodologies are reviewed in light of hydrodynamic acoustics,based on which,a hybrid method is presented.In the coupling procedure,the unsteady cavity flow field is computed using large-eddy simulation(LES) ,while the radiated sound is calculated by the Ffowcs Williams-Hawkings(FW-H) acoustic analogy with acoustic source terms extracted from the time-dependent solutions of the unsteady flow.The hybrid LES-FW-H acoustic analogy method is tested with an open cavity flow at Mach number of 0.006 and Reynolds number of 105 .Following the reflection theorem of Powell,the contributions from different source terms are quantified,and the terms involving wall-pressure fluctuations are found to account for most of the radiated intensity.The radiation field is investigated in the frequency domain.For the longitudinal direction,the sound propagates with a dominant radiation downstream the cavity in the near-field and a flatter directivity in the far-field,while for the spanwise direction,the acoustic waves have a similar propagation along+z and-z directions,with no visible directivity.展开更多
The sound and the fury is regarded as one of the greatest novels in the 20^th century and as a work of great brilliance, even genius. People have been studying it from the literary point of view or other disciplines, ...The sound and the fury is regarded as one of the greatest novels in the 20^th century and as a work of great brilliance, even genius. People have been studying it from the literary point of view or other disciplines, but not from the perspective of discourse analysis. This paper intends to make a tentative analysis of peculiar discourse strategies adopted by Faulkner in this novel from the discoursal point of view.展开更多
The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By ...The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By optimizing the homogeneity of Diameter Sphere Voltnne (DSV), the positions and currents of the seed coils will be obtained. Secondly, according to the positions and currents of the seed coils, the current density of superconducting wires is determined, and then the original sections for the coils can be achieved. An optimization for the homogeneity based on the constrained nonlincar optimization method is employed to determine the coils with good homogeneity. Thirdly, the magnetic field generated by previous coils is set as the background field, then add two coils with reverse current, and optimize the stray field line of 5 Gauss in a certain scope. Finally, a further optimization for the homogeneity is used to get Final coils. This method can also be used in the design of other axisynmaetfic superconducting MRI magnets.展开更多
Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragmen...Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragment dimension and spatial variation of drop flow,this paper uses laboratory dispersion simulation experiment and theoretical analysis to study the arch structure effect and its influence rule on the top coal loss in the process of coal gangue flow.Research shows that in the process of coal gangue flow,arch structure can be formed in three types:the lower arch structure,middle arch structure,and upper arch structure.Moreover,the arch structure has the characteristics of dynamic random arch,the formation probability of dynamic random arch with different layers is not the same,dynamic random arch caused the reduction of the top coal fluency;analyzing the dynamic random arch formation mechanism,influencing factors,and the conditions of instability;the formation probability of the lower arch structure is the highest,the whole coal arch and the coal gangue arch structure has the greatest impact on top coal loss.Therefore,to prevent or reduce the formation of lower whole coal arch structure,the lower coal gangue arch structure and the middle whole coal arch structure is the key to reduce the top coal loss.The research conclusion provides theoretical basis for the further improvement of the top coal recovery rate of the fully mechanized caving in extra thick coal seam.展开更多
Retaining gob-side entryways and the stability of gas drainage boreholes are two essential techniques in the co-extraction of coal and gas without entry pillars (CECGWEP). However, retained entryways located in deep...Retaining gob-side entryways and the stability of gas drainage boreholes are two essential techniques in the co-extraction of coal and gas without entry pillars (CECGWEP). However, retained entryways located in deep coal mines are hard to maintain, especially for constructing boreholes in confined spaces, owing to major deformations. Consequently, it is difficult to drill boreholes and maintain their stability, which therefore cannot guarantee the effectiveness of gas drainage. This paper presents three measures for conducting CECGWEP in deep mines on the basis of effective space in retained entryways for gas drainage, They are combinations of retaining roadways and face-lagging inclined boreholes, retaining roadways and face-advancing inclined boreholes, and retaining roadways and high return airway inclined boreholes. Several essential techniques are suggested to improve the maintenance of retained entryways and the stabilization of boreholes. For the particular cases considered in this study, two field trials have verified the latter two measures from the results obtained from the faces 1111(1) and 11112(1) in the Zhuji Mine. The results indicate that these models can effectively solve the problems in deep mines. The maximum gas drainage flow for a single hole can reach 8.1 m^3/min and the effective drainage distance can be extended up to 150 m or more.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51490675,51322903,and 51279224)
文摘Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.
基金Supported by National High Technology Research and Development Program of China("863"Program,No.2006AA09A312)National NaturalScience Foundation of China(No.50705063)
文摘In this paper,the hydrodynamically generated noise by the flow over an open cavity is studied.First,aeroacoustic theories and computational aeroacoustic(CAA) methodologies are reviewed in light of hydrodynamic acoustics,based on which,a hybrid method is presented.In the coupling procedure,the unsteady cavity flow field is computed using large-eddy simulation(LES) ,while the radiated sound is calculated by the Ffowcs Williams-Hawkings(FW-H) acoustic analogy with acoustic source terms extracted from the time-dependent solutions of the unsteady flow.The hybrid LES-FW-H acoustic analogy method is tested with an open cavity flow at Mach number of 0.006 and Reynolds number of 105 .Following the reflection theorem of Powell,the contributions from different source terms are quantified,and the terms involving wall-pressure fluctuations are found to account for most of the radiated intensity.The radiation field is investigated in the frequency domain.For the longitudinal direction,the sound propagates with a dominant radiation downstream the cavity in the near-field and a flatter directivity in the far-field,while for the spanwise direction,the acoustic waves have a similar propagation along+z and-z directions,with no visible directivity.
文摘The sound and the fury is regarded as one of the greatest novels in the 20^th century and as a work of great brilliance, even genius. People have been studying it from the literary point of view or other disciplines, but not from the perspective of discourse analysis. This paper intends to make a tentative analysis of peculiar discourse strategies adopted by Faulkner in this novel from the discoursal point of view.
基金supported by the National Natural Science Foundation of China(No.50577063)
文摘The optimal design method for an open Magnetic Resonance Imaging (MRI) superconducting magnet with an active shielding configuration is proposed. Firstly, three pairs of current rings are employed as seed coils. By optimizing the homogeneity of Diameter Sphere Voltnne (DSV), the positions and currents of the seed coils will be obtained. Secondly, according to the positions and currents of the seed coils, the current density of superconducting wires is determined, and then the original sections for the coils can be achieved. An optimization for the homogeneity based on the constrained nonlincar optimization method is employed to determine the coils with good homogeneity. Thirdly, the magnetic field generated by previous coils is set as the background field, then add two coils with reverse current, and optimize the stray field line of 5 Gauss in a certain scope. Finally, a further optimization for the homogeneity is used to get Final coils. This method can also be used in the design of other axisynmaetfic superconducting MRI magnets.
基金the Independent Research Subject of State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No.SKLCRSM12X03)the Scientific Research and Innovation Project for College Graduates in Jiangsu (No.CXZZ13_0947)+1 种基金Top-Notch Academic Programs of Jiangsu Higher Education Institutionsthe Priority Academic Development Program of Jiangsu Higher Education Institutions
文摘Based on the characteristics of the top coal thickness of the fully mechanized caving in special thick coal seam,the long distance of coal gangue caving,as well as the different sizes of the coal gangue broken fragment dimension and spatial variation of drop flow,this paper uses laboratory dispersion simulation experiment and theoretical analysis to study the arch structure effect and its influence rule on the top coal loss in the process of coal gangue flow.Research shows that in the process of coal gangue flow,arch structure can be formed in three types:the lower arch structure,middle arch structure,and upper arch structure.Moreover,the arch structure has the characteristics of dynamic random arch,the formation probability of dynamic random arch with different layers is not the same,dynamic random arch caused the reduction of the top coal fluency;analyzing the dynamic random arch formation mechanism,influencing factors,and the conditions of instability;the formation probability of the lower arch structure is the highest,the whole coal arch and the coal gangue arch structure has the greatest impact on top coal loss.Therefore,to prevent or reduce the formation of lower whole coal arch structure,the lower coal gangue arch structure and the middle whole coal arch structure is the key to reduce the top coal loss.The research conclusion provides theoretical basis for the further improvement of the top coal recovery rate of the fully mechanized caving in extra thick coal seam.
基金Acknowledgments The research was supported by Program for Changjiang Scholars and Innovative Research Team in University (IRT_I4R55), and the National Natural Science Foundation of China under Grant No. NSFC-51274193.
文摘Retaining gob-side entryways and the stability of gas drainage boreholes are two essential techniques in the co-extraction of coal and gas without entry pillars (CECGWEP). However, retained entryways located in deep coal mines are hard to maintain, especially for constructing boreholes in confined spaces, owing to major deformations. Consequently, it is difficult to drill boreholes and maintain their stability, which therefore cannot guarantee the effectiveness of gas drainage. This paper presents three measures for conducting CECGWEP in deep mines on the basis of effective space in retained entryways for gas drainage, They are combinations of retaining roadways and face-lagging inclined boreholes, retaining roadways and face-advancing inclined boreholes, and retaining roadways and high return airway inclined boreholes. Several essential techniques are suggested to improve the maintenance of retained entryways and the stabilization of boreholes. For the particular cases considered in this study, two field trials have verified the latter two measures from the results obtained from the faces 1111(1) and 11112(1) in the Zhuji Mine. The results indicate that these models can effectively solve the problems in deep mines. The maximum gas drainage flow for a single hole can reach 8.1 m^3/min and the effective drainage distance can be extended up to 150 m or more.