-
题名基于自步学习的开放集领域自适应
- 1
-
-
作者
刘星宏
周毅
周涛
秦杰
-
机构
东南大学计算机科学与工程学院
新一代人工智能技术与交叉应用教育部重点实验室(东南大学)
南京理工大学计算机科学与工程学院
南京航空航天大学计算机科学与技术学院
-
出处
《计算机研究与发展》
EI
CSCD
北大核心
2023年第8期1711-1726,共16页
-
基金
国家自然科学基金项目(62106043)
江苏省自然科学基金项目(BK20210225)
南京市留学人员科技创新项目(1109002305)。
-
文摘
领域自适应的目的是将从源领域获得的知识泛化到具有不同数据分布的目标领域.传统的领域自适应方法假设源域和目标域的类别是相同的,但在现实世界的场景中并非总是如此.为了解决这个缺点,开放集领域自适应在目标域中引入了未知类以代表源域中不存在的类别.开放集领域自适应旨在不仅识别属于源域和目标域共享的已知类别样本,还要识别未知类别样本.传统的领域自适应方法旨在将整个目标域与源域对齐以最小化域偏移,这在开放集领域自适应场景中不可避免地导致负迁移.为了解决开放集领域自适应带来的挑战,提出了一种基于自步学习的新颖框架SPL-OSDA (self-paced learning for openset domain adaptation),用于精确区分已知类和未知类样本,并进行领域自适应.为了利用未标记的目标域样本实现自步学习,为目标域样本生成伪标签,并为开放集领域自适应场景设计一个跨领域混合方法.这种方法最大程度地减小了伪标签的噪声,并确保模型逐步从简单到复杂的例子中学习目标域的已知类特征.为了提高模型在开放场景的可靠性以满足开放场景可信人工智能的要求,引入了多个准则以区分已知类和未知类样本.此外,与现有的需要手动调整超参数阈值以区分已知类和未知类的开集领域自适应方法不同,所提方法可以自动调整合适的阈值,无需在测试过程中进行经验性调参.与经验性调整阈值相比,所提的模型在不同超参数及实验设定下都表现出了良好的鲁棒性.实验结果表明,与各种最先进的方法相比,所提方法在不同的基准测试中始终取得卓越的性能.
-
关键词
物体识别
迁移学习
无监督领域自适应
开放集领域自适应
自步学习
-
Keywords
object recognition
transfer learning
unsupervised domain adaptation
open-set domain adaptation
selfpaced learning
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-