中文司法领域的实体和关系抽取技术在提高办案效率方面具有重要作用,但现有的关系抽取模型缺乏领域知识且难以处理重叠实体,造成难以准确区分和提取实体与关系等问题.通过引入领域知识,提出一种法律信息增强模块,增强了用所提法律潜在...中文司法领域的实体和关系抽取技术在提高办案效率方面具有重要作用,但现有的关系抽取模型缺乏领域知识且难以处理重叠实体,造成难以准确区分和提取实体与关系等问题.通过引入领域知识,提出一种法律信息增强模块,增强了用所提法律潜在关系与全局对应(legal potential relationship and global correspondence,LPRGC)模型理解法律文本中术语、规则和上下文信息的能力,从而提高了实体和关系的识别准确性,进而提升了实体和关系抽取算法的性能.为解决重叠实体问题,设计了一种基于潜在关系和实体对齐的关系抽取方法.通过精确标注实体位置,筛选潜在关系,并利用全局矩阵对齐实体,解决重叠实体的关系抽取问题,能够更准确地捕捉到重叠实体之间的关系,并有效地将其映射到正确的实体对上,从而提高抽取结果的准确性.在中国法律智能技术评测数据集上进行实体和关系抽取实验,结果表明,LPRGC模型的准确率、召回率和F_(1)值分别为85.21%、81.19%和83.15%,均优于对比模型,特别是在处理实体重叠问题时,LPRGC模型在单实体重叠类型的抽取中,F_(1)值达到了81.45%;在多实体重叠类型的抽取中,F_(1)值达80.67%.LPRGC模型在实体和关系抽取的准确性上较现有方法有明显改进,在处理复杂法律文本中的实体重叠问题上取得了显著效果.展开更多
针对传统实体关系抽取需要预先指定关系类型和制定抽取规则等无法胜任大规模文本的情况,开放式信息抽取(Open Information Extraction,OIE)在以英语为代表的西方语言中取得了重大进展,但对于汉语的研究却显得不足。为此,研究了在组块层...针对传统实体关系抽取需要预先指定关系类型和制定抽取规则等无法胜任大规模文本的情况,开放式信息抽取(Open Information Extraction,OIE)在以英语为代表的西方语言中取得了重大进展,但对于汉语的研究却显得不足。为此,研究了在组块层次标注基础上应用马尔可夫逻辑网分层次进行中文专利开放式实体关系抽取的方法。实验表明:以组块为出发点降低了对句子理解的难度,外层和内层组块可以统一处理,减少了工程代价;而且在相同特征条件下与支持向量机相比,基于马尔可夫逻辑网的关系抽取效果更理想,外层和内层识别结果的F值分别可达到77.92%和69.20%。展开更多
地质领域实体关系抽取是构建地质知识图谱的基础,对地质领域文本信息抽取与知识库构建具有重要的作用。针对地质领域实体关系复杂、缺少人工标注语料库等特点,提出了面向地质领域实体关系联合抽取模型,着重对多地质文本中存在的复杂重...地质领域实体关系抽取是构建地质知识图谱的基础,对地质领域文本信息抽取与知识库构建具有重要的作用。针对地质领域实体关系复杂、缺少人工标注语料库等特点,提出了面向地质领域实体关系联合抽取模型,着重对多地质文本中存在的复杂重叠关系进行识别,避免传统流水线模型中由于实体识别错误造成级联误差。文章构建了高质量地质领域实体关系语料库,提出了基于预训练语言模型BERT(Bidirectional Encoder Representations from Transformers)和双向门控循环单元BiGRU(Bidirectional Gated Recurrent Units)与条件随机场CRF(Conditional Random Field)的序列标注模型,实现对实体关系的联合抽取。在构建数据集上进行了实验,结果表明,本文提出的联合抽取模型在实体关系抽取上的F1值达到0.671,验证了本文模型在地质实体关系抽取的有效性。展开更多
文摘中文司法领域的实体和关系抽取技术在提高办案效率方面具有重要作用,但现有的关系抽取模型缺乏领域知识且难以处理重叠实体,造成难以准确区分和提取实体与关系等问题.通过引入领域知识,提出一种法律信息增强模块,增强了用所提法律潜在关系与全局对应(legal potential relationship and global correspondence,LPRGC)模型理解法律文本中术语、规则和上下文信息的能力,从而提高了实体和关系的识别准确性,进而提升了实体和关系抽取算法的性能.为解决重叠实体问题,设计了一种基于潜在关系和实体对齐的关系抽取方法.通过精确标注实体位置,筛选潜在关系,并利用全局矩阵对齐实体,解决重叠实体的关系抽取问题,能够更准确地捕捉到重叠实体之间的关系,并有效地将其映射到正确的实体对上,从而提高抽取结果的准确性.在中国法律智能技术评测数据集上进行实体和关系抽取实验,结果表明,LPRGC模型的准确率、召回率和F_(1)值分别为85.21%、81.19%和83.15%,均优于对比模型,特别是在处理实体重叠问题时,LPRGC模型在单实体重叠类型的抽取中,F_(1)值达到了81.45%;在多实体重叠类型的抽取中,F_(1)值达80.67%.LPRGC模型在实体和关系抽取的准确性上较现有方法有明显改进,在处理复杂法律文本中的实体重叠问题上取得了显著效果.
文摘针对传统实体关系抽取需要预先指定关系类型和制定抽取规则等无法胜任大规模文本的情况,开放式信息抽取(Open Information Extraction,OIE)在以英语为代表的西方语言中取得了重大进展,但对于汉语的研究却显得不足。为此,研究了在组块层次标注基础上应用马尔可夫逻辑网分层次进行中文专利开放式实体关系抽取的方法。实验表明:以组块为出发点降低了对句子理解的难度,外层和内层组块可以统一处理,减少了工程代价;而且在相同特征条件下与支持向量机相比,基于马尔可夫逻辑网的关系抽取效果更理想,外层和内层识别结果的F值分别可达到77.92%和69.20%。
文摘地质领域实体关系抽取是构建地质知识图谱的基础,对地质领域文本信息抽取与知识库构建具有重要的作用。针对地质领域实体关系复杂、缺少人工标注语料库等特点,提出了面向地质领域实体关系联合抽取模型,着重对多地质文本中存在的复杂重叠关系进行识别,避免传统流水线模型中由于实体识别错误造成级联误差。文章构建了高质量地质领域实体关系语料库,提出了基于预训练语言模型BERT(Bidirectional Encoder Representations from Transformers)和双向门控循环单元BiGRU(Bidirectional Gated Recurrent Units)与条件随机场CRF(Conditional Random Field)的序列标注模型,实现对实体关系的联合抽取。在构建数据集上进行了实验,结果表明,本文提出的联合抽取模型在实体关系抽取上的F1值达到0.671,验证了本文模型在地质实体关系抽取的有效性。