The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning ele...The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the fracture toughness of T74 overaging is increased by 22.9% at the expense of 13.6% strength, and retrogression and reaging (RRA) enhances fracture toughness 14.2% without reducing the strength compared with T6 temper. The fracture toughness of dual-retrogression and reaging (DRRA) is equivalent to that of T74 with an increased strength of 14.6%. The SCC resistance increases in the order: T6〈RRA〈DRRA≈T74. The differences of fracture toughness and SCC were explained on the basis of the role of matrix precipitates and grain boundary orecioitates.展开更多
The microstructure,mechanical properties and stress corrosion cracking(SCC)of 7136 aluminum alloy under T 6,T 79 and T 74 aging treatments were studied and the effects of microstructure on the mechanical properties an...The microstructure,mechanical properties and stress corrosion cracking(SCC)of 7136 aluminum alloy under T 6,T 79 and T 74 aging treatments were studied and the effects of microstructure on the mechanical properties and SCC were discussed.The results show that the ultimate tensile strength and yield strength of the aging 7136 alloys follow this sequence from high to low:T 6>T 79>pre-aging>T 74.For 7136 Al alloy after T 6 aging,the average diameter of the precipitates was(5.7±1.7)nm,and the diameter of 60.7%(number fraction)precipitates was 2−6 nm,leading to a good precipitation strengthening.The K_(IC)of T 74-aging alloy is 38.2 MPa·m^(1/2),which is 26.1%more than that of T 6-aging alloy and 17.5%more than that of T 79-aging alloy.The improved fracture toughness in T 74-aging alloy is mainly due to the reduction of the strength difference between intragranular and grain boundary.The SCC resistance of the aging 7136 alloys follows this sequence from high to low:T 79>T 74>T 6.After T 79 aging,the discontinuous grain boundary precipitates and narrow precipitate free zones were obtained in 7136 alloy,which was beneficial to SCC resistance.展开更多
Transient electromagnetic method(TEM)has been widely used in the field of medium and shallow underground detection due to its high detection efficiency and large detection depth.However,due to the long turn-off time o...Transient electromagnetic method(TEM)has been widely used in the field of medium and shallow underground detection due to its high detection efficiency and large detection depth.However,due to the long turn-off time of the transmitting current caused by the inductive characteristics of the transmitting coil,the early signals will be overwhelmed by primary field.Since the early signals contain most of shallow geological signals,it is necessary to reduce the long turn-off time to get shallow layer signal.Due to lack of a reliable and effective clamping method for high-power transmission at present,we design a TEM transmitter fast turn-off circuit,combining self-resonant zero-voltage switching technology with the corresponding timing control circuit to solve this problem effectively.A transient electromagnetic transmitter based on self-resonant constant voltage clamping technology was fabricated to charge the clamping capacitor.The rated transmitting current of the transmitter is 20 A,and the turn-off time is continuously adjustable from 550-50μs.Moreover,the current drop process is approximately linear rather than exponential attenuation.Compared with the existing clamping methods,the proposed clamping method solves the problems that transient voltage suppressor(TVS)clamping cannot be used in high-power occasions and has a high failure rate.It also solves the problem of long pre-charge time in traditional capacitor clamping methods due to insufficient inductance of the small size transmitting coil.The proposed method can provide a reference for fast shutdown of large current.展开更多
The model of catastrophic destabilization of tunnel under rock slipping in fault zone based on catastrophic theory and the potential function of fault movement were pre- sented.On the basis of the results above,throug...The model of catastrophic destabilization of tunnel under rock slipping in fault zone based on catastrophic theory and the potential function of fault movement were pre- sented.On the basis of the results above,through Taylor series expansion of the equation of equilibrium surface,its standard form was obtained.Analysis show that catastrophic destabilization of tunnel will occur only when stiffness ratio between elastic sector and strain weakening sector of soft rocks was larger than or equal to 1.On the other hand, sliding behavior and evolution path of fault were directly affected by exogenous process, and it was a major extraneous factor which leads to catastrophic destabilization of tunnel. In the condition of system catastrophe could be generated,if external forces vary from smaller to larger,firstly,fault sticks or creeps,and secondly,when external force equal to or larger than critical value,fault turns to slip suddenly.Inverse,if external forces vary from larger to smaller,fault smoothly slips firstly,when external force equal to or smaller than critical value,and fault turns to stick or creep suddenly.展开更多
Reliability and wear resistance of cutting picks play a significant role in coal mine exploitation with coal shearers.Tool bit separation,blade breaking,severe erosion of the cutting body and fatigue fractures are the...Reliability and wear resistance of cutting picks play a significant role in coal mine exploitation with coal shearers.Tool bit separation,blade breaking,severe erosion of the cutting body and fatigue fractures are the main reasons for failure of cutting picks.We carried out carburization on a 30CrMnMo alloy to synthesize a new cutting pick material with improved mechanical properties and high wear resistance.The results indicated that carburization can effectively strengthen the surface of the 30CrMnMo alloy by forming a thick carburized layer and thus significantly improve the surface hardness and wear resistance.In addition,the excellent toughness of 30CrMnMo alloy as a substrate of cutting picks can prevent brittle ruptures and fatigue fractures under high impact stress conditions.The significant decrease in both frictional coefficient and rate of erosion of this carburized 30CrMnMo alloy suggests that this alloy is a potential material for cutting picks of coal shearers after rational carburization.展开更多
基金Projects(2010CB731701,2012CB619502)supported by the National Basic Research Program of ChinaProjects(51201186,51327902)supported by the National Natural Science Foundation of China
文摘The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the fracture toughness of T74 overaging is increased by 22.9% at the expense of 13.6% strength, and retrogression and reaging (RRA) enhances fracture toughness 14.2% without reducing the strength compared with T6 temper. The fracture toughness of dual-retrogression and reaging (DRRA) is equivalent to that of T74 with an increased strength of 14.6%. The SCC resistance increases in the order: T6〈RRA〈DRRA≈T74. The differences of fracture toughness and SCC were explained on the basis of the role of matrix precipitates and grain boundary orecioitates.
基金Project(2017GK2261)supported by the Science and Technology Program of Hunan Province,ChinaProject(41423040204)supported by National Key Laboratory of Light Weight and High Strength Structural Materials Equipment Pre-research Laboratory Foundation,China。
文摘The microstructure,mechanical properties and stress corrosion cracking(SCC)of 7136 aluminum alloy under T 6,T 79 and T 74 aging treatments were studied and the effects of microstructure on the mechanical properties and SCC were discussed.The results show that the ultimate tensile strength and yield strength of the aging 7136 alloys follow this sequence from high to low:T 6>T 79>pre-aging>T 74.For 7136 Al alloy after T 6 aging,the average diameter of the precipitates was(5.7±1.7)nm,and the diameter of 60.7%(number fraction)precipitates was 2−6 nm,leading to a good precipitation strengthening.The K_(IC)of T 74-aging alloy is 38.2 MPa·m^(1/2),which is 26.1%more than that of T 6-aging alloy and 17.5%more than that of T 79-aging alloy.The improved fracture toughness in T 74-aging alloy is mainly due to the reduction of the strength difference between intragranular and grain boundary.The SCC resistance of the aging 7136 alloys follows this sequence from high to low:T 79>T 74>T 6.After T 79 aging,the discontinuous grain boundary precipitates and narrow precipitate free zones were obtained in 7136 alloy,which was beneficial to SCC resistance.
文摘Transient electromagnetic method(TEM)has been widely used in the field of medium and shallow underground detection due to its high detection efficiency and large detection depth.However,due to the long turn-off time of the transmitting current caused by the inductive characteristics of the transmitting coil,the early signals will be overwhelmed by primary field.Since the early signals contain most of shallow geological signals,it is necessary to reduce the long turn-off time to get shallow layer signal.Due to lack of a reliable and effective clamping method for high-power transmission at present,we design a TEM transmitter fast turn-off circuit,combining self-resonant zero-voltage switching technology with the corresponding timing control circuit to solve this problem effectively.A transient electromagnetic transmitter based on self-resonant constant voltage clamping technology was fabricated to charge the clamping capacitor.The rated transmitting current of the transmitter is 20 A,and the turn-off time is continuously adjustable from 550-50μs.Moreover,the current drop process is approximately linear rather than exponential attenuation.Compared with the existing clamping methods,the proposed clamping method solves the problems that transient voltage suppressor(TVS)clamping cannot be used in high-power occasions and has a high failure rate.It also solves the problem of long pre-charge time in traditional capacitor clamping methods due to insufficient inductance of the small size transmitting coil.The proposed method can provide a reference for fast shutdown of large current.
基金the National Natural Science Foundation of China(50678079)
文摘The model of catastrophic destabilization of tunnel under rock slipping in fault zone based on catastrophic theory and the potential function of fault movement were pre- sented.On the basis of the results above,through Taylor series expansion of the equation of equilibrium surface,its standard form was obtained.Analysis show that catastrophic destabilization of tunnel will occur only when stiffness ratio between elastic sector and strain weakening sector of soft rocks was larger than or equal to 1.On the other hand, sliding behavior and evolution path of fault were directly affected by exogenous process, and it was a major extraneous factor which leads to catastrophic destabilization of tunnel. In the condition of system catastrophe could be generated,if external forces vary from smaller to larger,firstly,fault sticks or creeps,and secondly,when external force equal to or larger than critical value,fault turns to slip suddenly.Inverse,if external forces vary from larger to smaller,fault smoothly slips firstly,when external force equal to or smaller than critical value,and fault turns to stick or creep suddenly.
基金the Youth Foundation of China University of Mining & Technology (No.2009A056)the Tribology Science Fund from State Key Laboratory of Tribology at Tsinghua University (No.SKLTKF08A01)+1 种基金the National Natural Science Foundation of China (Nos.50905180 and 51005234)the National Science and Technology Pillar Program in the Eleventh Five-Year Plan Period (No.2008BAB36B02)
文摘Reliability and wear resistance of cutting picks play a significant role in coal mine exploitation with coal shearers.Tool bit separation,blade breaking,severe erosion of the cutting body and fatigue fractures are the main reasons for failure of cutting picks.We carried out carburization on a 30CrMnMo alloy to synthesize a new cutting pick material with improved mechanical properties and high wear resistance.The results indicated that carburization can effectively strengthen the surface of the 30CrMnMo alloy by forming a thick carburized layer and thus significantly improve the surface hardness and wear resistance.In addition,the excellent toughness of 30CrMnMo alloy as a substrate of cutting picks can prevent brittle ruptures and fatigue fractures under high impact stress conditions.The significant decrease in both frictional coefficient and rate of erosion of this carburized 30CrMnMo alloy suggests that this alloy is a potential material for cutting picks of coal shearers after rational carburization.