期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的热轧带钢头部厚度的命中预测 被引量:20
1
作者 于加学 孙杰 张殿华 《钢铁》 CAS CSCD 北大核心 2021年第9期19-25,共7页
针对热轧带钢头部厚度精度较低的问题,提出了一种基于深度学习的热轧带钢头部厚度的命中预测方法。在精轧过程中,带钢头部张力较小,且通常温度较低;同时轧机工艺参数复杂,精准设定存在困难,轧制带钢头部经常会出现厚度不合格的现象。利... 针对热轧带钢头部厚度精度较低的问题,提出了一种基于深度学习的热轧带钢头部厚度的命中预测方法。在精轧过程中,带钢头部张力较小,且通常温度较低;同时轧机工艺参数复杂,精准设定存在困难,轧制带钢头部经常会出现厚度不合格的现象。利用深度神经网络的非线性拟合能力,设计带钢头部厚度预测模型,给轧机的参数设定提供参考、提高头部厚度命中率、减少钢材浪费。深度神经网络(DNN)包含输入层、隐藏层、输出层,使用TensorFlow开源机器学习框架设计预测模型并用程序实现。调整神经网络各参数,通过研究它们对模型性能的影响,优化预测模型。最后使用多种厚度的带钢测试数据训练并检验头部厚度预测模型,结果显示,分类预测命中准确率在80%以上。 展开更多
关键词 热轧带钢 深度学习 厚度预测 头部厚度命中率 开源机器学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部