A design of the high-current modular pulsed power generator and results of the test of this generator are presented. The generator is based on two capacitors each of 2.5μF and 50 kV maximum charging voltage. Two mult...A design of the high-current modular pulsed power generator and results of the test of this generator are presented. The generator is based on two capacitors each of 2.5μF and 50 kV maximum charging voltage. Two multi-gaps gas spark switches with capacitive coupled triggering are used to discharge stored energy into the load. The triggering pulse with amplitude up to 70 kV and rise time of-50 ns is supplied by three-stage Marx-generator. The output of each capacitor with multi-gaps spark switch is connected to the load by eight coaxial cables -1 m in length. The total inductance of the generator does not exceed 200 nil. At 40 kV charging voltage this generator produces 180 kA with a quarter of period of 1.6 μs at short circuit load of-15 nil. The generator has been used in the research of underwater electrical wire explosion. The space separation of the load and modules of generator allows one to avoid possible damages of the generator by shock waves produced during the wire explosion. In addition, this modular generator design allows to increase easily the number of modules and to reach several hundreds of kiloamperes in the load.展开更多
文摘A design of the high-current modular pulsed power generator and results of the test of this generator are presented. The generator is based on two capacitors each of 2.5μF and 50 kV maximum charging voltage. Two multi-gaps gas spark switches with capacitive coupled triggering are used to discharge stored energy into the load. The triggering pulse with amplitude up to 70 kV and rise time of-50 ns is supplied by three-stage Marx-generator. The output of each capacitor with multi-gaps spark switch is connected to the load by eight coaxial cables -1 m in length. The total inductance of the generator does not exceed 200 nil. At 40 kV charging voltage this generator produces 180 kA with a quarter of period of 1.6 μs at short circuit load of-15 nil. The generator has been used in the research of underwater electrical wire explosion. The space separation of the load and modules of generator allows one to avoid possible damages of the generator by shock waves produced during the wire explosion. In addition, this modular generator design allows to increase easily the number of modules and to reach several hundreds of kiloamperes in the load.