With regard to blasting in deep rock masses,it is commonly thought that an increase in the in-situ stress will change the blast-induced rock crack propagation and ultimately affect rock fragmentation.However,little at...With regard to blasting in deep rock masses,it is commonly thought that an increase in the in-situ stress will change the blast-induced rock crack propagation and ultimately affect rock fragmentation.However,little attention has been given to the change in seismic wave radiation when the fractured zone changes with the in-situ stress.In this study,the influences of in-situ stress on blast-induced rock fracture and seismic wave radiation are numerically investigated by a coupled SPH-FEM simulation method.The results show that the change in blast-induced rock fracture with in-situ stress has a considerable effect on the seismic wave energy and composition.As the in-situ stress level increases,the size of the fractured zone is significantly reduced,and more explosion energy is transformed into seismic energy.A reduction in the size of the fractured zone(seismic wave source zone)results in a higher frequency content of the seismic waves.In a nonhydrostatic in-situ stress field,blast-induced cracks are most suppressed in the direction of the minimum in-situ stress,and thus the seismic waves generated in this direction have the highest energy density.In addition to P-waves,Swaves are also generated when a circular explosive is detonated in a nonhydrostatic in-situ stress field.The S-waves result from the asymmetrical release of rock strain energy due to the anisotropic blast-induced fracture pattern.展开更多
基金Projects(51969015,U1765207)supported by the National Natural Science Foundation of ChinaProjects(20192ACB21019,20181BAB206047)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘With regard to blasting in deep rock masses,it is commonly thought that an increase in the in-situ stress will change the blast-induced rock crack propagation and ultimately affect rock fragmentation.However,little attention has been given to the change in seismic wave radiation when the fractured zone changes with the in-situ stress.In this study,the influences of in-situ stress on blast-induced rock fracture and seismic wave radiation are numerically investigated by a coupled SPH-FEM simulation method.The results show that the change in blast-induced rock fracture with in-situ stress has a considerable effect on the seismic wave energy and composition.As the in-situ stress level increases,the size of the fractured zone is significantly reduced,and more explosion energy is transformed into seismic energy.A reduction in the size of the fractured zone(seismic wave source zone)results in a higher frequency content of the seismic waves.In a nonhydrostatic in-situ stress field,blast-induced cracks are most suppressed in the direction of the minimum in-situ stress,and thus the seismic waves generated in this direction have the highest energy density.In addition to P-waves,Swaves are also generated when a circular explosive is detonated in a nonhydrostatic in-situ stress field.The S-waves result from the asymmetrical release of rock strain energy due to the anisotropic blast-induced fracture pattern.