Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an...Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.展开更多
Fully mechanized cave mining with large mining height is a new mining method, due to its large mining thickness and lower roadway excavation, the technology has been widely used in China's thick seam mining. In order...Fully mechanized cave mining with large mining height is a new mining method, due to its large mining thickness and lower roadway excavation, the technology has been widely used in China's thick seam mining. In order to improve the top-coal recovery ratio of fully mechanized cave mining with large mining height, a study was conducted on optimizing the caving process, based on the mechanized caving face 1302N in Longgu Coal Mine. This was achieved by improving the PFC numerical calculation methods, and establishing a more accurate model system. On this basis, the recovery ratio of the top coal in different drawing intervals and technologies was investigated in order to achieve a reasonable caving process. The top-coal tracking system was used for practical surveying of the recovery ratio of top coal.展开更多
From an analysis of the relationships of grouting coefficients under the conditions of grouting reducing subsidence, it is concluded that the reducing subsidence rate is in direct proportion to the grouting-recovery r...From an analysis of the relationships of grouting coefficients under the conditions of grouting reducing subsidence, it is concluded that the reducing subsidence rate is in direct proportion to the grouting-recovery ratio, and its proportional coefficient depends on the coefficient of reducing subsidence and collapsing coefficient.The coefficient for reducing subsidence volume φ=ΔV/V_(ash) is related to overburden lithology.The coefficient for reducing subsidence volume φ is always larger than 1.This improves the reducing subsidence rate,the grouting-recovery ratio, and the coefficient for reducing subsidence volume, which can maximize the control of surface subsidence.展开更多
基金Projects(50934002,51074013,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.
文摘Fully mechanized cave mining with large mining height is a new mining method, due to its large mining thickness and lower roadway excavation, the technology has been widely used in China's thick seam mining. In order to improve the top-coal recovery ratio of fully mechanized cave mining with large mining height, a study was conducted on optimizing the caving process, based on the mechanized caving face 1302N in Longgu Coal Mine. This was achieved by improving the PFC numerical calculation methods, and establishing a more accurate model system. On this basis, the recovery ratio of the top coal in different drawing intervals and technologies was investigated in order to achieve a reasonable caving process. The top-coal tracking system was used for practical surveying of the recovery ratio of top coal.
基金Supported by the National Natural Science Foundation of China (50174035, 50474029)
文摘From an analysis of the relationships of grouting coefficients under the conditions of grouting reducing subsidence, it is concluded that the reducing subsidence rate is in direct proportion to the grouting-recovery ratio, and its proportional coefficient depends on the coefficient of reducing subsidence and collapsing coefficient.The coefficient for reducing subsidence volume φ=ΔV/V_(ash) is related to overburden lithology.The coefficient for reducing subsidence volume φ is always larger than 1.This improves the reducing subsidence rate,the grouting-recovery ratio, and the coefficient for reducing subsidence volume, which can maximize the control of surface subsidence.