期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
概率积分法开采沉陷预测的数值计算与分析 被引量:12
1
作者 魏宗海 熊伟 《测绘工程》 CSCD 2019年第3期35-40,共6页
开采沉陷预测在"三下"采煤、土地复垦治理等生产实践方面具有非常重要的作用。针对基于概率积分法的开采沉陷预测软件编制中存在的二重积分计算问题,文中根据数值积分原理,提出将概率积分沉陷预测公式中存在的二重积分转化为... 开采沉陷预测在"三下"采煤、土地复垦治理等生产实践方面具有非常重要的作用。针对基于概率积分法的开采沉陷预测软件编制中存在的二重积分计算问题,文中根据数值积分原理,提出将概率积分沉陷预测公式中存在的二重积分转化为两个一重定积分,然后分别使用变步长辛卜生数值积分来对一重定积分进行计算,进而获得地表沉陷预测值的方法。通过实例对比分析表明,该方法计算精确、结果可靠,适用于开采沉陷预测程序的编制。 展开更多
关键词 开采沉陷预测 概率积分法 变步长辛卜生二重积分 数值计算
下载PDF
基于Adaboost-PSO-BP模型的开采沉陷预测研究 被引量:7
2
作者 邢垒 原喜屯 张沛 《煤炭工程》 北大核心 2020年第12期141-144,共4页
针对开采沉陷量与多影响因素复杂非线性关系问题,提出了基于粒子群算法优化BP神经网络的Adaboost强预测模型(Adaboost-PSO-BP模型)。预测结果表明,与BP模型、AdaboostBP模型和PSO-BP模型相比,Adaboost-PSO-BP模型提高了预测精度,平均相... 针对开采沉陷量与多影响因素复杂非线性关系问题,提出了基于粒子群算法优化BP神经网络的Adaboost强预测模型(Adaboost-PSO-BP模型)。预测结果表明,与BP模型、AdaboostBP模型和PSO-BP模型相比,Adaboost-PSO-BP模型提高了预测精度,平均相对误差值优化到4.26%;该模型融合了Adaboost算法侧重预测误差大的样本和粒子群算法优化神经网络权值及阈值的特点,实现了强预测器"优中选优"的目的,在开采沉陷预测中具有可行性。 展开更多
关键词 开采沉陷预测 BP神经网络 粒子群算法 自适应增强算法
下载PDF
基于遗传算法的煤矿开采沉陷预测研究
3
作者 渠涛 张廷院 《中国新技术新产品》 2024年第19期98-100,共3页
由于煤矿开采条件复杂,因此在工程中难以准确地预测实际沉陷情况,导致矿区下沉量原始数据拟合曲线与预测数据拟合曲线偏差大。本文研究基于遗传算法的煤矿开采沉陷预测方法,通过合理布设沉陷测点获取准确数据,并综合考虑地质条件等因素... 由于煤矿开采条件复杂,因此在工程中难以准确地预测实际沉陷情况,导致矿区下沉量原始数据拟合曲线与预测数据拟合曲线偏差大。本文研究基于遗传算法的煤矿开采沉陷预测方法,通过合理布设沉陷测点获取准确数据,并综合考虑地质条件等因素构建预测模型。采用遗传算法优化模型参数,以提高预测精度。试验结果显示,基于遗传算法的预测方法显著优于其他方法,预测结果与实际测量值高度一致。当采用该方法处理非线性关系和多变因素时表现优越,为矿区安全开采和环境保护提供了科学依据,具有实际的应用价值。 展开更多
关键词 遗传算法 煤矿开采 煤矿开采沉陷 沉陷预测 开采沉陷预测
下载PDF
Hossfeld模型在矿区地表动态沉降预测应用的可行性分析 被引量:1
4
作者 赵月 王志伟 +2 位作者 张国建 王翔 丁文壮 《中国矿业》 北大核心 2024年第3期124-132,共9页
采用时间模型进行沉降预测是目前煤矿区地表动态沉降预测方法之一,在分析典型时间模型存在时间零点问题的基础上,采用林木增长模型(即Hossfeld模型),结合水准观测数据和D-InSAR沉降数据,对Hossfeld模型在煤矿开采沉降盆地范围内单点和... 采用时间模型进行沉降预测是目前煤矿区地表动态沉降预测方法之一,在分析典型时间模型存在时间零点问题的基础上,采用林木增长模型(即Hossfeld模型),结合水准观测数据和D-InSAR沉降数据,对Hossfeld模型在煤矿开采沉降盆地范围内单点和任意点沉降预测精度,以及模型参数的相关性进行了评价。研究结果表明:在联合水准数据单点沉降预测结果中,修正时间零点的Knothe模型和Usher模型精度高于未修正时间零点的Knothe模型和Usher模型;在RMSE<100 mm比例中,Hossfeld模型精度略低于修正时间零点的Usher模型,高于未修正时间零点的Usher模型,远高于修正时间零点和未修正时间零点的Knothe模型;在MAE<100 mm比例中,Hossfeld模型精度最高;在联合D-InSAR沉降数据矿区全盆地任意点动态沉降结果中,通过统计构建动态预计模型参数相关性,发现Hossfeld模型参数的相干性最强;进一步,通过计算Bland-Altman图表明Hossfeld模型结果与D-InSAR结果差别较小,并且在RMSE和MAE<20 mm误差范围内,Hossfeld模型精度比例最高。相对于Knothe模型和Usher模型而言,Hossfeld模型无需时间零点修正,并且获取较高精度的煤矿地表动态沉降预测结果。 展开更多
关键词 水准数据 D-INSAR 时间模型 时间零点 Hossfeld模型 开采沉陷预测
下载PDF
煤矿建设项目开采沉陷对环境影响评价研究 被引量:5
5
作者 孙贵梅 吴侃 王欣 《四川环境》 2007年第5期107-110,共4页
本文系统介绍了开采沉陷对环境影响评价的基本方法,结合工作实践,针对不同环境因子的分项评价进行总结,并给出相应的治理对策,最后得出结论。
关键词 环境影响评价 开采沉陷 开采沉陷预测 环境影响因子
下载PDF
高潜水位矿区生态系统演变趋势研究:以淮南潘谢矿区为例 被引量:8
6
作者 安士凯 李召龙 +1 位作者 胡志胜 车申 《中国矿业》 北大核心 2015年第1期40-44,共5页
为了有效地应对高潜水位矿区煤炭资源开采后带来的生态环境问题,以淮南潘谢矿区为研究区域,应用遥感技术分析了耕地、水体分布以及景观格局,分析了生态系统结构的变化,得出了矿区生态系统结构总体变化规律以及不同生态系统相互转化规律... 为了有效地应对高潜水位矿区煤炭资源开采后带来的生态环境问题,以淮南潘谢矿区为研究区域,应用遥感技术分析了耕地、水体分布以及景观格局,分析了生态系统结构的变化,得出了矿区生态系统结构总体变化规律以及不同生态系统相互转化规律。应用开采沉陷预测技术,基于矿区生态系统结构的变化规律,预测了生态系统演化趋势,得出的结论为:耕地面积逐年减少,矿区煤炭资源完全开采结束时,矿区的生态景观将由水域占绝对主导优势,矿区由陆地生态系统向水陆复合生态系统演变,土地利用模式将优化。 展开更多
关键词 煤矿区 生态系统 遥感 开采沉陷预测技术 演变趋势
下载PDF
Quantitative prediction of mining subsidence and its impact on the environment 被引量:13
7
作者 Jianjun Song Chunjian Han +6 位作者 Ping Li Junwei Zhang Deyuan Liu Minde Jiang Lin Zheng Jingkai Zhang Jianying Song 《International Journal of Mining Science and Technology》 2012年第1期69-73,共5页
This study is focused on the prediction of mining subsidence and its impact on the environment in the Hongqi mining area. The study was carried out by means of a probability integral model based, in first instance bas... This study is focused on the prediction of mining subsidence and its impact on the environment in the Hongqi mining area. The study was carried out by means of a probability integral model based, in first instance based on field surveys and the analysis of data collected from this area. Isolines of mining sub- sidence were then drawn and the impact caused by mining subsidence on the environment was analyzed quantitatively by spatial analysis with Geographic Information System (GIS). The results indicate that the subsidence area of the first working-mine can be as large as 2.54 km2, the maximum subsidence is 3440 mrn which will cause 1524 houses to be relocated. The entire subsidence area of the mine can reach 8.09 km2, with a maximum subsidence of 3590 ram. Under these circumstances the value of the loss of ecosystem services Will reach 5.371 million Yuan and the cost of relocating buildings will increase to 6.858 million Yuan. 展开更多
关键词 Mining subsidence PREDICTION Ecological environment Quantitative analysis
下载PDF
An improved influence function method for predicting subsidence caused by longwall mining operations in inclined coal seams 被引量:10
8
作者 Yi Luo 《International Journal of Coal Science & Technology》 EI 2015年第3期163-169,共7页
Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditi... Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model. 展开更多
关键词 Subsidence prediction Influence function method Inclined coal seam Longwall mining
下载PDF
Mountain ground movement prediction caused by mining based on BP-neural network 被引量:3
9
作者 ZHANG He-sheng LIU Li-juan LIU Hong-fu 《Journal of Coal Science & Engineering(China)》 2011年第1期12-15,共4页
Six main influencing factors: slope, aspect, distance, angle, angle of coal seam, and the ratio of depth and thickness, were selected by Grey correlation theory and Grey relational analysis procedure programmed by th... Six main influencing factors: slope, aspect, distance, angle, angle of coal seam, and the ratio of depth and thickness, were selected by Grey correlation theory and Grey relational analysis procedure programmed by the MATLAB software package to select the surface movement and deformation parameters. On this basis, the paper built a BP neural network model that takes the six main influencing factors as input data and corresponding value of ground subsidence as output data. Ground subsidence of the 3406 mining face in Haoyu Coal was predicted by the trained BP neural network. By comparing the prediction and the practices, the research shows that it is feasible to use the 13P neural network to predict mountain mining subsidence. 展开更多
关键词 BP neural network mountain regions mining subsidence Grey theory
下载PDF
A method to calculate displacement factors using SVM 被引量:5
10
作者 Li Peixian Tan Zhixiang +1 位作者 Yan Lili Deng Kazhong 《Mining Science and Technology》 EI CAS 2011年第3期307-311,共5页
In order to improve the precision of mining subsidence prediction, a mathematical model using Support Vector Machine (SVM) was established to calculate the displacement factor. The study is based on a comprehensive ... In order to improve the precision of mining subsidence prediction, a mathematical model using Support Vector Machine (SVM) was established to calculate the displacement factor. The study is based on a comprehensive analysis of factors affecting the displacement factor, such as mechanical properties of the cover rock, the ratio of mining depth to seam thickness, dip angle of the coal seam and the thickness of loose layer. Data of 63 typical observation stations were used as a training and testing sample set. A SVM regression model of the displacement factor and the factors affecting it was established with a kernel function, an insensitive loss factor and a properly selected penalty factor. Given an accurate calculation algorithm for testing and analysis, the results show that an SVM regression model can calcu- late displacement factor precisely and reliable precision can be obtained which meets engineering requirements. The experimental results show that the method to calculation of the displacement factor, based on the SVM method, is feasible. The many factors affecting the displacement factor can be consid- ered with this method. The research provides an efficient and accurate approach for the calculation of displacement in mining subsidence orediction. 展开更多
关键词 Mining subsidence Displacement factor SVM Probability integration method
下载PDF
Study on the forecasting and maintenance system of special railway subsidence in mine area
11
作者 王喜富 朱德明 任占营 《Journal of Coal Science & Engineering(China)》 2003年第1期85-89,共5页
The fully mechanized caving coal mining under the railway in mine area will result in difficulty maintenance of railway because of great distortion and subsidence speed of terrene and railway. If the subsidence foreca... The fully mechanized caving coal mining under the railway in mine area will result in difficulty maintenance of railway because of great distortion and subsidence speed of terrene and railway. If the subsidence forecasting is incorrect and maintenance measure is not suitable in the preceding and the process of mining, the normal operation of the railway in mine area will not be ensured and perhaps the safety accident will be resulted. The railway subsidence forecasting and maintenance system for fully mechanized caving coal face are studied and developed in this connection. Based on the accurate subsidence forecasting of the terrene and railway, the maintenance measure for track and switch turnout in railway is put forward in this system. 展开更多
关键词 railway in mine area mining subsidence forecasting and maintenance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部