The design of non-noble metal heterogeneous catalyst with superior performance for selective hydrogenation or transfer hydrogenation of nitroarenes to amines is significant but challenging.Herein,a single-atom Fe supp...The design of non-noble metal heterogeneous catalyst with superior performance for selective hydrogenation or transfer hydrogenation of nitroarenes to amines is significant but challenging.Herein,a single-atom Fe supported by nitrogen-doped carbon(Fe_(1)/N-C)catalyst is reported.The Fe_(1)/N-C sample shows superior performances for the selective hydrogenation and transfer hydrogenation of nitrobenzene to aniline at different temperatures.Density functional theory(DFT)calculations show that the superior catalytic activity for the selective hydrogenation at lower temperatures could be attributed to the effective activation of the reactant and intermediates by the Fe_(1)/N-C.Moreover,the excellent performance of Fe_(1)/N-C for the selective transfer hydrogenation could be attributed to that the reaction energy barrier for dehydrogenation of isopropanol can be overcome by elevated temperatures.展开更多
The dehydrogenation reaction of isopropanol occurring at low temperature is of great industrial importance. It is a key procedure in isopropanol/acetone/hydrogen chemical heat pump system. An experimental investigatio...The dehydrogenation reaction of isopropanol occurring at low temperature is of great industrial importance. It is a key procedure in isopropanol/acetone/hydrogen chemical heat pump system. An experimental investigation was performed to study the behavior of the liquid phase dehydrogenation of isopropanol over amorphous alloy Raney nickel catalysts. Un-promoted and promoted catalysts were used and their performances were compared under various catalyst amounts, acetone content in the reactant and reaction temperature ranging from 348 K to 355 K.It is found that there exists an optimum catalyst concentration which is about 0.34 g in 300 ml isopropanol. The temperature has evident effect on the reaction. The presence of activities of Fe-promoted catalyst decrease slightly compared to the un-promoted catalyst when the temperature are 348 K and 351 K. Besides, the reaction rate decreases almost linearly with the increase of acetone volume fraction in the reactant.展开更多
基金the National Key R&D Program of China(2018YFA0702003)the National Natural Science Foundation of China(21890383,21671117,21871159 and21901135)the Science and Technology Key Project of Guangdong Province of China(2020B010188002)。
文摘The design of non-noble metal heterogeneous catalyst with superior performance for selective hydrogenation or transfer hydrogenation of nitroarenes to amines is significant but challenging.Herein,a single-atom Fe supported by nitrogen-doped carbon(Fe_(1)/N-C)catalyst is reported.The Fe_(1)/N-C sample shows superior performances for the selective hydrogenation and transfer hydrogenation of nitrobenzene to aniline at different temperatures.Density functional theory(DFT)calculations show that the superior catalytic activity for the selective hydrogenation at lower temperatures could be attributed to the effective activation of the reactant and intermediates by the Fe_(1)/N-C.Moreover,the excellent performance of Fe_(1)/N-C for the selective transfer hydrogenation could be attributed to that the reaction energy barrier for dehydrogenation of isopropanol can be overcome by elevated temperatures.
基金supported by the National Natural Science Foundation of China under Grant No 51276181,Grant No.51106158the National Basic Research Program of China under Grant No 2011CB710705
文摘The dehydrogenation reaction of isopropanol occurring at low temperature is of great industrial importance. It is a key procedure in isopropanol/acetone/hydrogen chemical heat pump system. An experimental investigation was performed to study the behavior of the liquid phase dehydrogenation of isopropanol over amorphous alloy Raney nickel catalysts. Un-promoted and promoted catalysts were used and their performances were compared under various catalyst amounts, acetone content in the reactant and reaction temperature ranging from 348 K to 355 K.It is found that there exists an optimum catalyst concentration which is about 0.34 g in 300 ml isopropanol. The temperature has evident effect on the reaction. The presence of activities of Fe-promoted catalyst decrease slightly compared to the un-promoted catalyst when the temperature are 348 K and 351 K. Besides, the reaction rate decreases almost linearly with the increase of acetone volume fraction in the reactant.