Group testing is a method that can be used to estimate the prevalence of rare infectious diseases,which can effectively save time and reduce costs compared to the method of random sampling.However,previous literature ...Group testing is a method that can be used to estimate the prevalence of rare infectious diseases,which can effectively save time and reduce costs compared to the method of random sampling.However,previous literature only demonstrated the optimality of group testing strategy while estimating prevalence under some strong assumptions.This article weakens the assumption of misclassification rate in the previous literature,considers the misclassification rate of the infected samples as a differentiable function of the pool size,and explores some optimal properties of group testing for estimating prevalence in the presence of differential misclassification conforming to this assumption.This article theoretically demonstrates that the group testing strategy performs better than the sample by sample procedure in estimating disease prevalence when the total number of sample pools is given or the size of the test population is determined.Numerical simulation experiments were conducted to evaluate the performance of group tests in estimating prevalence in the presence of dilution effect.展开更多
End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerizatio...End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerization systems,it is highly challenging to achieve such end-functionalizations,because most of polydienyl chains are capped withη3-allyl-Nd moiety during the end of polymerization,which shows very poor reactivity with nucleophile compounds.We launched a new diene polymerization strategy calling coordinative chain transfer polymerization(CCTP)[1].In such a system,all the polydienyl chains are capped withη1-allyl-Al moieties,which reveal greater reactivity with cyclic esters and epoxide compounds,providing an effective manner to prepare polydiene-polyester amphiphilic block copolymers.Inspired by such findings,we now show herein how such types of chain-ends react with isot-hiocyanate to demonstrate an efficient in-situ manner to access end-functionalized polydienes by using CCTP.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.72091212).
文摘Group testing is a method that can be used to estimate the prevalence of rare infectious diseases,which can effectively save time and reduce costs compared to the method of random sampling.However,previous literature only demonstrated the optimality of group testing strategy while estimating prevalence under some strong assumptions.This article weakens the assumption of misclassification rate in the previous literature,considers the misclassification rate of the infected samples as a differentiable function of the pool size,and explores some optimal properties of group testing for estimating prevalence in the presence of differential misclassification conforming to this assumption.This article theoretically demonstrates that the group testing strategy performs better than the sample by sample procedure in estimating disease prevalence when the total number of sample pools is given or the size of the test population is determined.Numerical simulation experiments were conducted to evaluate the performance of group tests in estimating prevalence in the presence of dilution effect.
基金Supported by PetroChina Company Limited(2020 B-2711)。
文摘End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerization systems,it is highly challenging to achieve such end-functionalizations,because most of polydienyl chains are capped withη3-allyl-Nd moiety during the end of polymerization,which shows very poor reactivity with nucleophile compounds.We launched a new diene polymerization strategy calling coordinative chain transfer polymerization(CCTP)[1].In such a system,all the polydienyl chains are capped withη1-allyl-Al moieties,which reveal greater reactivity with cyclic esters and epoxide compounds,providing an effective manner to prepare polydiene-polyester amphiphilic block copolymers.Inspired by such findings,we now show herein how such types of chain-ends react with isot-hiocyanate to demonstrate an efficient in-situ manner to access end-functionalized polydienes by using CCTP.