通过微生物试验,比较了草酸浓度对微生物还原高岭土中Fe(Ⅲ)所起的作用;用环境扫描电镜(ESEM)和能量弥散X-射线谱图(EDS)分析了处理前后高岭土的结构变化。结果表明,在异化铁还原菌(dissimilatory iron reducing bacteria,DIRB)存在下,...通过微生物试验,比较了草酸浓度对微生物还原高岭土中Fe(Ⅲ)所起的作用;用环境扫描电镜(ESEM)和能量弥散X-射线谱图(EDS)分析了处理前后高岭土的结构变化。结果表明,在异化铁还原菌(dissimilatory iron reducing bacteria,DIRB)存在下,加入0.2g/L的草酸,对Fe(Ⅲ)的还原效果最好;草酸浓度过高或过低对Fe(Ⅲ)的还原都有抑制,当草酸浓度为1.5g/L时,微生物活性完全被抑制,此时Fe(Ⅲ)的还原量较低。化学对比试验表明,高岭土中Fe(Ⅲ)的还原随草酸浓度的增加逐渐增大,当草酸浓度达到13.0g/L时,化学处理1天后Fe(Ⅲ)的还原量与微生物处理4天相当。ESEM和EDS的测试结果表明,高岭土中微生物还原Fe(Ⅲ)的过程,并不改变高岭土的主要结构,铁元素被微生物选择性的还原。展开更多
考察不同因素对异化铁还原菌(Dissimilatory Iron Reducing Bacteria,DIRB)还原高岭土中Fe(Ⅲ)的影响,通过在底液中添加不同有机酸、草酸盐、络合剂和重金属离子来研究微生物还原铁的机制。结果发现,添加草酸对微生物还原铁有明显的促...考察不同因素对异化铁还原菌(Dissimilatory Iron Reducing Bacteria,DIRB)还原高岭土中Fe(Ⅲ)的影响,通过在底液中添加不同有机酸、草酸盐、络合剂和重金属离子来研究微生物还原铁的机制。结果发现,添加草酸对微生物还原铁有明显的促进作用,而乙酸和水杨酸则抑制了微生物的生长;添加草酸钠的实验表明草酸对微生物的促进作用是通过草酸根离子的作用而与草酸的酸性并无联系;络合剂(NTA)可以提高微生物异化铁还原量,而EDTA不影响铁还原的作用;Cu(Ⅱ)对微生物具有毒害作用从而抑制了微生物的还原活性,Mn(Ⅱ)对铁的还原则有明显的促进作用。此外,采用logistic方程对有促进作用的曲线进行拟合,发现添加草酸钠对微生物的还原铁促进作用最大。展开更多
Ethylthionocarbamates (ETC), which is the most widely used as collectors in the flotation of sulfide, is known to cause serious pollution to soil and groundwater. The potential biodegradation of ETC was evaluated b...Ethylthionocarbamates (ETC), which is the most widely used as collectors in the flotation of sulfide, is known to cause serious pollution to soil and groundwater. The potential biodegradation of ETC was evaluated by applying a mixed culture of iron-reducing bacteria (IRB) enriched from tailings dam sediments. The results showed that ETC can be degraded by IRB coupled to Fe(III) reduction, both of which can be increased in the presence of anthraquinone-2,6-disulfonate (AQDS). Moreover, Fe(III)-EDTA was found to be a more favorable terminal electron acceptor compared to α-Fe2O3, e.g., within 30 d, 72% of ETC was degraded when α-Fe2O3+AQDS was applied, while it is 82.67% when Fe(III)-EDTA+AQDS is added. The dynamic models indicated that the kETC degradation was decreased in the order of Fe(III)-EDTA+AQDS〉α-Fe2O3+AQDS〉Fe(III)-EDTA〉α-Fe2O3, with the corresponding maximum biodegradation rates being 2.6, 2.45, 2.4 and 2.0 mg/(L·d), respectively, and positive parallel correlations could be observed between kFe(III) and kETC. These findings demonstrate that IRB has a good application prospect in flotation wastewater.展开更多
文摘通过微生物试验,比较了草酸浓度对微生物还原高岭土中Fe(Ⅲ)所起的作用;用环境扫描电镜(ESEM)和能量弥散X-射线谱图(EDS)分析了处理前后高岭土的结构变化。结果表明,在异化铁还原菌(dissimilatory iron reducing bacteria,DIRB)存在下,加入0.2g/L的草酸,对Fe(Ⅲ)的还原效果最好;草酸浓度过高或过低对Fe(Ⅲ)的还原都有抑制,当草酸浓度为1.5g/L时,微生物活性完全被抑制,此时Fe(Ⅲ)的还原量较低。化学对比试验表明,高岭土中Fe(Ⅲ)的还原随草酸浓度的增加逐渐增大,当草酸浓度达到13.0g/L时,化学处理1天后Fe(Ⅲ)的还原量与微生物处理4天相当。ESEM和EDS的测试结果表明,高岭土中微生物还原Fe(Ⅲ)的过程,并不改变高岭土的主要结构,铁元素被微生物选择性的还原。
文摘考察不同因素对异化铁还原菌(Dissimilatory Iron Reducing Bacteria,DIRB)还原高岭土中Fe(Ⅲ)的影响,通过在底液中添加不同有机酸、草酸盐、络合剂和重金属离子来研究微生物还原铁的机制。结果发现,添加草酸对微生物还原铁有明显的促进作用,而乙酸和水杨酸则抑制了微生物的生长;添加草酸钠的实验表明草酸对微生物的促进作用是通过草酸根离子的作用而与草酸的酸性并无联系;络合剂(NTA)可以提高微生物异化铁还原量,而EDTA不影响铁还原的作用;Cu(Ⅱ)对微生物具有毒害作用从而抑制了微生物的还原活性,Mn(Ⅱ)对铁的还原则有明显的促进作用。此外,采用logistic方程对有促进作用的曲线进行拟合,发现添加草酸钠对微生物的还原铁促进作用最大。
基金Project(51708561)supported by the National Natural Science Foundation of ChinaProjects(CZP17097,CZW15037)supported by the Fundamental Research Funds for the Central Universities,China
文摘Ethylthionocarbamates (ETC), which is the most widely used as collectors in the flotation of sulfide, is known to cause serious pollution to soil and groundwater. The potential biodegradation of ETC was evaluated by applying a mixed culture of iron-reducing bacteria (IRB) enriched from tailings dam sediments. The results showed that ETC can be degraded by IRB coupled to Fe(III) reduction, both of which can be increased in the presence of anthraquinone-2,6-disulfonate (AQDS). Moreover, Fe(III)-EDTA was found to be a more favorable terminal electron acceptor compared to α-Fe2O3, e.g., within 30 d, 72% of ETC was degraded when α-Fe2O3+AQDS was applied, while it is 82.67% when Fe(III)-EDTA+AQDS is added. The dynamic models indicated that the kETC degradation was decreased in the order of Fe(III)-EDTA+AQDS〉α-Fe2O3+AQDS〉Fe(III)-EDTA〉α-Fe2O3, with the corresponding maximum biodegradation rates being 2.6, 2.45, 2.4 and 2.0 mg/(L·d), respectively, and positive parallel correlations could be observed between kFe(III) and kETC. These findings demonstrate that IRB has a good application prospect in flotation wastewater.