This paper presents a unified positive-and negative-sequence dual-dq dynamic model of wind-turbine driven doubly-fed induction generator(DFIG) under unbalanced grid voltage conditions. Strategies for enhanced control ...This paper presents a unified positive-and negative-sequence dual-dq dynamic model of wind-turbine driven doubly-fed induction generator(DFIG) under unbalanced grid voltage conditions. Strategies for enhanced control and operation of a DFIG-used back-to-back(BTB) PWM voltage source converter(VSC) are proposed. The modified control design for the grid-side converter in the stationary αβ frames diminishes the amplitude of DC-link voltage ripples of twice the grid frequency,and the two proposed control targets for the rotor-side converter are alternatively achieved,which,as a result,improve the fault-ride through(FRT) capability of the DFIG based wind power generation systems during unbalanced network supply. A complete unbalanced control scheme with both grid-and rotor-side converters included is designed. Finally,simulation was carried out on a 1.5 MW wind-turbine driven DFIG system and the validity of the developed unified model and the feasibility of the proposed control strategies are all confirmed by the simulated results.展开更多
In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In t...In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation.展开更多
In this paper,two new concepts—“main out-of-step mode” and “minor out-of-step mode”—are proposed for power system reliability analysis. Large-scale power system studies found that out-of-step generator groups ma...In this paper,two new concepts—“main out-of-step mode” and “minor out-of-step mode”—are proposed for power system reliability analysis. Large-scale power system studies found that out-of-step generator groups may have characteristics of the main out-of-step mode and the minor out-of-step mode. The generator groups with main out-of-step modes can determine the out-of-step interface of the large-scale power system,while generators with the minor out-of-step modes cannot play such a role. Therefore,the method of capturing the out-of-step interface by seeking the lowest voltage point(the out-of-step center) can only group the generators with the main out-of-step modes,and may fail to combine the generators with the minor out-of-step modes into proper coherent generator groups. Thus,it is necessary in engineering applications to equip the generators that are likely to have the characteristics of the minor out-of-step modes with separation devices based on off-line simulation studies in order to reduce the risk of further accidents caused by these generators after system separation.展开更多
The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator wi...The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator with double windings. The method is based on 2D time-dependent magnetic field coupled with electric circuit. An application example of a 12-phase self-excited induction generator (SEIG) was provided to demonstrate the effectiveness of the presented approach. Some of the calculated results show good coincidence with the experiment values.展开更多
A power saving frequency difference controlling method was introduced by the double inverter and motor experiment system.The characters of the system under differ- ent loads were investigated.The theoretical analysis ...A power saving frequency difference controlling method was introduced by the double inverter and motor experiment system.The characters of the system under differ- ent loads were investigated.The theoretical analysis and experiment results show the frequency difference method is a ideal power saving speed regulation method for the dou- ble inverter and motor system.The experiment system is simply structured,convenient to operate and provides a new way of character testing for frequency conversion speed regulation.展开更多
The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region...The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region, the PV curves at the point of common coupling (PCC), key buses and important substations are plotted; the variation of voltage as well as the limit and margin of static stability are analyzed. It is resulted from the simulation that the limit of static voltage at weak nodes is lower, and the static voltage of the power system with wind farms adopting doubly-fed induction generators (DFIG) is more stable than that with wind farms adopting common asynchronous generators.展开更多
The objective of this study is the simulation of the fuzzy control of a double-fed induction wind generator (DFIG) and oriented stator flux using MATLAB/S[MULINK. The system consists of a horizontal wind turbine, co...The objective of this study is the simulation of the fuzzy control of a double-fed induction wind generator (DFIG) and oriented stator flux using MATLAB/S[MULINK. The system consists of a horizontal wind turbine, coupled to a DFIG and driven by a feed consisting of two three+phase PWM converters in double bridge in order to maximize the delivered power at different wind speeds. We used a traditional regulator and a fuzzy controller. A model of the wind speed and the wind turbine is presented followed by the modeling of double-fed asynchronous generator DFIG controlled by fuzzy logic is performed according to two scenarios: with and without MPPT.展开更多
The performance of a 1.5 MVA wind-power Doubly Fed Induction Generator (DFIG) under network fault is studied using simulator developed in MATLAB-SIMULINK. This paper investigates a new control method able to improve...The performance of a 1.5 MVA wind-power Doubly Fed Induction Generator (DFIG) under network fault is studied using simulator developed in MATLAB-SIMULINK. This paper investigates a new control method able to improve the fault-ride through capability of DFIG. In such generators the appearance of severe voltage sags at the coupling point make highlight important over currents at the rotor/stator windings, making the use of crowbar protection device necessary and inevitable in order to protect the machine as well as the rotor side power converter. The simulator consists of the DFIG analytical model, power transformer model and the detailed frequency converter model including crowbar protection device. Simulation results are carried out to show the transient behavior of the DFIG when a sudden voltage dip is introduced with and without the crowbar implementation.展开更多
This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kine...This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kinetics energy conversion from into electrical energy using a marine current turbine simulator, developed in three stages. In the first stage the marine current turbine is emulated with the help of an induction drive who reproduces at its shaft the characteristics of a real turbine. It is connected with a load break used to force the emulator to respect on its shaft the characteristics of the real turbine. In the second stage, the induction drive is connected on the shaft with a doubly feed induction generator, for the study of energy conversion. The emulator respects the working regime, developed in the previous step, of a real turbine due to the control of the drive. In the third stage the induction machine emulating the turbine is interconnected with the generator and the load break. This assembly is used for the dynamic study of the marine current turbine. The break is used to create extra loads on the shaft and a variable inertial moment.展开更多
In this work, the authors propose the study of a wind speed variable based on the DFAM (double fed asynchronous machine). The model of the turbine is drawn from the classical equations describing the operation of a ...In this work, the authors propose the study of a wind speed variable based on the DFAM (double fed asynchronous machine). The model of the turbine is drawn from the classical equations describing the operation of a variable wind speed. The torque generated by the turbine is applied to the DFAM directly connected on the network side and the stator via a bidirectional converter side rotor. This configuration allows velocity variations of ±30% around the synchronous speed and the converter is then sized to one third of the rated power of the machine. The DFAM is controlled by a control vector ensuring operation of the wind turbine power coefficient maximum.展开更多
This paper presents a new transient model ofa standalone (isolated) self excited induction generator (SEIG). This model is based on direct phase quantities and is suitable to study the performance of the generator...This paper presents a new transient model ofa standalone (isolated) self excited induction generator (SEIG). This model is based on direct phase quantities and is suitable to study the performance of the generator under any balanced or unbalanced conditions. It includes a general load as well as general excitation capacitor model. The model has the advantage of connecting or disconnecting the neutral points of the generator electrical system with both excitation capacitors and load. Furthermore, a more accurate magnetization curve is used. Moreover, the simulation results have been verified experimentally.展开更多
Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supp...Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.展开更多
The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is t...The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is the consequence of the interaction of stator and rotor currents of different sequences. This paper presents a control technique to reduce the effect of unbalanced voltages on the DFIG in wind energy conversion systems. The negative sequence stator voltage is derived from the unbalanced three phase stator voltages. The compensated rotor voltage in terms of the derived negative sequence stator voltage and slip which minimizes the negative stator and rotor currents is proposed. The results from the simulation of control system with steady state model and dynamic model of the DFIG show that additional control loop with compensated voltage can significantly reduce torque and reactive power pulsations.展开更多
Based on a variational asymptotic analytical model, vibration and aeroelastic stability of rotor blades modeled as anisotropic thin-walled closed-section beams are systematically addressed. The analysis is applied to ...Based on a variational asymptotic analytical model, vibration and aeroelastic stability of rotor blades modeled as anisotropic thin-walled closed-section beams are systematically addressed. The analysis is applied to a laminated composite construction of the circumferentially asymmetric stiffness (CAS) that produces bending-twist coupling. The vibration characteristics of composite beam are determined by the Extended Galerkin Method. The unsteady aerodynamic loads and centrifugal force are integrated with the classical aerodynamic model to deal with aeroelastic stability analysis. The influence of some related factors, ply angle, rotating velocity, and wind speed, is investigated. The paper gives methods of eigenvalue analysis and aeroelastic response, and gives the approaches to restrain classical flutter.展开更多
基金Project (No. 50577056) supported by the National Natural ScienceFoundation of China
文摘This paper presents a unified positive-and negative-sequence dual-dq dynamic model of wind-turbine driven doubly-fed induction generator(DFIG) under unbalanced grid voltage conditions. Strategies for enhanced control and operation of a DFIG-used back-to-back(BTB) PWM voltage source converter(VSC) are proposed. The modified control design for the grid-side converter in the stationary αβ frames diminishes the amplitude of DC-link voltage ripples of twice the grid frequency,and the two proposed control targets for the rotor-side converter are alternatively achieved,which,as a result,improve the fault-ride through(FRT) capability of the DFIG based wind power generation systems during unbalanced network supply. A complete unbalanced control scheme with both grid-and rotor-side converters included is designed. Finally,simulation was carried out on a 1.5 MW wind-turbine driven DFIG system and the validity of the developed unified model and the feasibility of the proposed control strategies are all confirmed by the simulated results.
文摘In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation.
基金Project (No. 50277034) supported by the National Natural ScienceFoundation of China
文摘In this paper,two new concepts—“main out-of-step mode” and “minor out-of-step mode”—are proposed for power system reliability analysis. Large-scale power system studies found that out-of-step generator groups may have characteristics of the main out-of-step mode and the minor out-of-step mode. The generator groups with main out-of-step modes can determine the out-of-step interface of the large-scale power system,while generators with the minor out-of-step modes cannot play such a role. Therefore,the method of capturing the out-of-step interface by seeking the lowest voltage point(the out-of-step center) can only group the generators with the main out-of-step modes,and may fail to combine the generators with the minor out-of-step modes into proper coherent generator groups. Thus,it is necessary in engineering applications to equip the generators that are likely to have the characteristics of the minor out-of-step modes with separation devices based on off-line simulation studies in order to reduce the risk of further accidents caused by these generators after system separation.
文摘The accuracy prediction for the performance of an induction generator depends much on the parameters of the equivalent circuit. This paper presented a new way for calculating these parameters of induction generator with double windings. The method is based on 2D time-dependent magnetic field coupled with electric circuit. An application example of a 12-phase self-excited induction generator (SEIG) was provided to demonstrate the effectiveness of the presented approach. Some of the calculated results show good coincidence with the experiment values.
文摘A power saving frequency difference controlling method was introduced by the double inverter and motor experiment system.The characters of the system under differ- ent loads were investigated.The theoretical analysis and experiment results show the frequency difference method is a ideal power saving speed regulation method for the dou- ble inverter and motor system.The experiment system is simply structured,convenient to operate and provides a new way of character testing for frequency conversion speed regulation.
基金National Natural Science Foundation of China(5076700350867004)Autonomous university research projects(XJEDU2007105)
文摘The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region, the PV curves at the point of common coupling (PCC), key buses and important substations are plotted; the variation of voltage as well as the limit and margin of static stability are analyzed. It is resulted from the simulation that the limit of static voltage at weak nodes is lower, and the static voltage of the power system with wind farms adopting doubly-fed induction generators (DFIG) is more stable than that with wind farms adopting common asynchronous generators.
文摘The objective of this study is the simulation of the fuzzy control of a double-fed induction wind generator (DFIG) and oriented stator flux using MATLAB/S[MULINK. The system consists of a horizontal wind turbine, coupled to a DFIG and driven by a feed consisting of two three+phase PWM converters in double bridge in order to maximize the delivered power at different wind speeds. We used a traditional regulator and a fuzzy controller. A model of the wind speed and the wind turbine is presented followed by the modeling of double-fed asynchronous generator DFIG controlled by fuzzy logic is performed according to two scenarios: with and without MPPT.
文摘The performance of a 1.5 MVA wind-power Doubly Fed Induction Generator (DFIG) under network fault is studied using simulator developed in MATLAB-SIMULINK. This paper investigates a new control method able to improve the fault-ride through capability of DFIG. In such generators the appearance of severe voltage sags at the coupling point make highlight important over currents at the rotor/stator windings, making the use of crowbar protection device necessary and inevitable in order to protect the machine as well as the rotor side power converter. The simulator consists of the DFIG analytical model, power transformer model and the detailed frequency converter model including crowbar protection device. Simulation results are carried out to show the transient behavior of the DFIG when a sudden voltage dip is introduced with and without the crowbar implementation.
文摘This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kinetics energy conversion from into electrical energy using a marine current turbine simulator, developed in three stages. In the first stage the marine current turbine is emulated with the help of an induction drive who reproduces at its shaft the characteristics of a real turbine. It is connected with a load break used to force the emulator to respect on its shaft the characteristics of the real turbine. In the second stage, the induction drive is connected on the shaft with a doubly feed induction generator, for the study of energy conversion. The emulator respects the working regime, developed in the previous step, of a real turbine due to the control of the drive. In the third stage the induction machine emulating the turbine is interconnected with the generator and the load break. This assembly is used for the dynamic study of the marine current turbine. The break is used to create extra loads on the shaft and a variable inertial moment.
文摘In this work, the authors propose the study of a wind speed variable based on the DFAM (double fed asynchronous machine). The model of the turbine is drawn from the classical equations describing the operation of a variable wind speed. The torque generated by the turbine is applied to the DFAM directly connected on the network side and the stator via a bidirectional converter side rotor. This configuration allows velocity variations of ±30% around the synchronous speed and the converter is then sized to one third of the rated power of the machine. The DFAM is controlled by a control vector ensuring operation of the wind turbine power coefficient maximum.
文摘This paper presents a new transient model ofa standalone (isolated) self excited induction generator (SEIG). This model is based on direct phase quantities and is suitable to study the performance of the generator under any balanced or unbalanced conditions. It includes a general load as well as general excitation capacitor model. The model has the advantage of connecting or disconnecting the neutral points of the generator electrical system with both excitation capacitors and load. Furthermore, a more accurate magnetization curve is used. Moreover, the simulation results have been verified experimentally.
文摘Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.
文摘The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is the consequence of the interaction of stator and rotor currents of different sequences. This paper presents a control technique to reduce the effect of unbalanced voltages on the DFIG in wind energy conversion systems. The negative sequence stator voltage is derived from the unbalanced three phase stator voltages. The compensated rotor voltage in terms of the derived negative sequence stator voltage and slip which minimizes the negative stator and rotor currents is proposed. The results from the simulation of control system with steady state model and dynamic model of the DFIG show that additional control loop with compensated voltage can significantly reduce torque and reactive power pulsations.
基金supported by the National Natural Science Foundations of China (Grant No. 10972124)Science & Technology Project of Shandong Provincial Education Department of China (Grant No. J08LB04)+1 种基金Research Project of ‘SUST Spring Bud’ (2009AZZ020)Qunxing Project of SUST (qx101002)
文摘Based on a variational asymptotic analytical model, vibration and aeroelastic stability of rotor blades modeled as anisotropic thin-walled closed-section beams are systematically addressed. The analysis is applied to a laminated composite construction of the circumferentially asymmetric stiffness (CAS) that produces bending-twist coupling. The vibration characteristics of composite beam are determined by the Extended Galerkin Method. The unsteady aerodynamic loads and centrifugal force are integrated with the classical aerodynamic model to deal with aeroelastic stability analysis. The influence of some related factors, ply angle, rotating velocity, and wind speed, is investigated. The paper gives methods of eigenvalue analysis and aeroelastic response, and gives the approaches to restrain classical flutter.