Based on the Karma model and the Eggleston regularization technique of the strong interfacial energy anisotropy, a phase-field model was established for HCP materials. An explicit finite difference numerical method wa...Based on the Karma model and the Eggleston regularization technique of the strong interfacial energy anisotropy, a phase-field model was established for HCP materials. An explicit finite difference numerical method was used to solve phase field model and simulate the dendrite growth behaviors of HCP materials. Results indicate that the dendrite morphology presents obvious six-fold symmetry, and discontinuity in the variation of interface orientation occurs, resulting in a fact that the corners were formed at the tips of the main stem and side branches. When the interfacial energy anisotropy strength is lower than the critical value(1/35), the steady-state tip velocity of dendrite increases with anisotropy as expected. As the anisotropy strength crosses the critical value, the steady-state tip velocity drops down by about 0.89%. With further increase in anisotropy strength, the steady-state tip velocity increases and reaches the maximum value at anisotropy strength of 0.04, then decreases.展开更多
The modeling and identification of anisotropic damping property of Ni based single crystal alloys are presented. The anisotropic material damping property is modeled by 3 D rheological equations and identified by us...The modeling and identification of anisotropic damping property of Ni based single crystal alloys are presented. The anisotropic material damping property is modeled by 3 D rheological equations and identified by using specimen modal damping ratios and FEM simulation. The measured damping ratios which exhibit strong anisotropy are predicted better by the method presented than by other methods.展开更多
Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain, an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHM...Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain, an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHMs) sphere is obtained in terms of spherical vector wave functions in a uniaxial anisotropic LHM medium. The expression of the analytical solution contains only some one-dimensional integral which can be calculated easily. Numerical results show that Mie series of plane wave scattering by an isotropic LHM sphere is a special case of the present method. Some numerical results of electromagnetic scattering of a uniaxial anisotropic sphere by a plane wave are given.展开更多
Uniaxial strain hardening exponent is not suitable for describing the strain hardening behaviors of the anisotropic materials, especially when material deforms in the multi-axial stress states. In this work, a novel m...Uniaxial strain hardening exponent is not suitable for describing the strain hardening behaviors of the anisotropic materials, especially when material deforms in the multi-axial stress states. In this work, a novel method was proposed to estimate the equivalent strain hardening exponent of anisotropic materials based on an equivalent energy method. By performing extensive finite element (FE) simulations of the spherical indentation on anisotropic materials, dimensionless function was proposed to correlate the strain hardening exponent of anisotropic materials with the indentation imprint parameters. And then, a mathematic expression on the strain hardening exponent of anisotropic materials with the indentation imprint was established to estimate the equivalent strain hardening exponent of anisotropic materials by directly solving this dimensionless function. Additionally, Meyer equation was modified to determine the yield stress of anisotropic materials. The effectiveness and reliability of the new method were verified by the numerical examples and by its application on the TC1M engineering material.展开更多
The acoustic focusing effect of metamaterial has a wide range of applications in medicine,acoustic imaging,signal detection,etc.This paper presents an acoustic metamaterial applied to the acoustic focusing effect.The ...The acoustic focusing effect of metamaterial has a wide range of applications in medicine,acoustic imaging,signal detection,etc.This paper presents an acoustic metamaterial applied to the acoustic focusing effect.The formation of acousticmetamaterial is designed into a cylindrical structure with three layers of ludox,cork and fluid rubber,which can produce a focusingphenomenon when acoustic waves propagate in air.For these strange phenomena,a scientific description is given theorietically.It can also be concluded that when the frequency of the incident acoustic wave increases?the number of peripheral bandsoutside the focusing poles will increase periodically.Besides,there are numerous groups of multipolar focusing phenomena inhigh frequency.The design of this acoustic metamaterial is successful through theorietical and experimental verification,therefore,it can be applied to acoustic communication and test.展开更多
The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordin...The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem,the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable,from which the stresses can be derived. The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.展开更多
Dynamic tests of three bonded and two unbonded full-prestressed concrete beams were carried out.The purpose was to seek the relation between prestressing force and natural frequency.Test results indicate that the freq...Dynamic tests of three bonded and two unbonded full-prestressed concrete beams were carried out.The purpose was to seek the relation between prestressing force and natural frequency.Test results indicate that the frequency of prestressed concrete(PSC)beam increases with the increase in prestressing force approximately.The results are different from the dynamic characteristics of isotropic material beam subjected to compressive axial force which were put forward by Clough et al.The reason is that the beams were considered as isotropic,homogeneous,linear elastic material in the traditional analysis method.However,more accurate results are required in the analysis of frequency of PSC beam.The constitutive mode of PSC member is analyzed based on microstructure of concrete in this paper.The orthotropic linear elastic mode is used to analyze the relation between dynamic frequency and prestressing force of concrete beam,at the same time the equivalent stiffness of prestressed tendon relating to the prestressing force is added to the bending deformation stiffness of the beam.The analytical value agrees well with the test result,indicating that the current analysis method in this paper is feasible to full-prestressed concrete beam.展开更多
By using Galerkin’s method, the finite element formulation is made for axisymmtric heat transfer problems for anisotropic materials from the heat transfer differential equations expressed in terms of heat fluid densi...By using Galerkin’s method, the finite element formulation is made for axisymmtric heat transfer problems for anisotropic materials from the heat transfer differential equations expressed in terms of heat fluid density. Results of an example show that the heat transfer anisotropy has an important effect on temperature field.展开更多
We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materialsusing the integral equation method (IEM).Based on the superposition principle, we use Hertz vector formula...We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materialsusing the integral equation method (IEM).Based on the superposition principle, we use Hertz vector formulations ofradiated fields to study the interaction of wave with matter.We derive in a new way the dispersion relation, Snell's lawand reflection/transmission coefficients by self-consistent analyses.Moreover, we find two new forms of the generalizedextinction theorem.Applying the IEM, we investigate the wave propagation through a slab and disclose the underlyingphysics, which are further verified by numerical simulations.The results lead to a unified framework of the IEM for thepropagation of wave incident either from a medium or vacuum in stratified dielectric-magnetic materials.展开更多
In the present paper, initial-boundary value problem of plane stress state of micropolar theory of elasticity is considered for orthotropic material in the domain of thin rectangle. General hypotheses are formulated, ...In the present paper, initial-boundary value problem of plane stress state of micropolar theory of elasticity is considered for orthotropic material in the domain of thin rectangle. General hypotheses are formulated, which are the qualitative results of the asymptotic method of integration of the stated initial-boundary value problem. On the basis of the accepted hypotheses general applied one-dimensional models of dynamics of bending deformation of micropolar orthotropic elastic thin bars with free fields of displacements and rotations are constructed with and without consideration of shear deformations. With the help of the constructed models different dynamic problems of micropolar bars can be studied. Here concrete problems of free and forced vibrations of hinged supported micropolar orthotropic elastic thin bar are studied. Numerical analysis is done and specific features of dynamic characteristics of micropolar material are revealed. Particularly, it is shown that there is a frequency of vibrations of the micropolar bar that does not depend on bar sizes.展开更多
Transformation fieM method (TFM) is developed to estimate the anisotropic dielectric properties of crystal composites having arbitrary shapes and dielectric properties of crystal inclusions, whose principal dielectr...Transformation fieM method (TFM) is developed to estimate the anisotropic dielectric properties of crystal composites having arbitrary shapes and dielectric properties of crystal inclusions, whose principal dielectric axis are different from those of anisotropic crystal matrix. The complicated boundary-value problem caused by inclusion shapes is circumvented by introducing a transformation electric field into the crystal composites regions, and the effective anisotropic dielectric responses are formulated in terms of the transformation field. Furthermore, the numerical results show that the effective anisotropie dielectric responses of crystal composites periodically vary as a function of the rotating angle between the principal dielectric axes of inclusion and matrix crystal materials. It is found that at larger inclusion volume fraction the inclusion shapes induce profound effect on the effective anisotropic dielectric responses.展开更多
The authors have prepared and characterized a chiral one-dimensional Cu(II)-Cr(VI) coordination polymer, [CuL2][Cr207] (L = (IR, 2R)-diaminocyclohexane), which exhibited intense d-d bands as well as charge tra...The authors have prepared and characterized a chiral one-dimensional Cu(II)-Cr(VI) coordination polymer, [CuL2][Cr207] (L = (IR, 2R)-diaminocyclohexane), which exhibited intense d-d bands as well as charge transfer bands in the solid state electronic and CD spectra. Thermally-accessible lattice distortion was observed along the crystallographic a axis, which corresponded to Jahn-Teller distortion of Cu(II) chromophores. After firing [CuL2][Cr207], they could obtain a Cu(II)-Cr(VI) complex bimetallic oxide showing ferromagnetism and isotropic thermally-accessible lattice distortion. Preparation of composite materials of the coordination polymers and a complex bimetallic oxide could be confirmed by IR spectra and magnetic properties. It should be noted that the complex bimetallic oxide as the composite exhibited anisotropic thermally-accessible lattice distortion by adsorption of the chiral one-dimensional coordination polymer.展开更多
Stresses, particularly those at geometric discontinuities, can influence structural integrity of engineering components. Motivated by the prevalence of cutouts in components, the objective of this paper is to demonstr...Stresses, particularly those at geometric discontinuities, can influence structural integrity of engineering components. Motivated by the prevalence of cutouts in components, the objective of this paper is to demonstrate ability to stress analyze finite, circularly-perforated orthotropic composites whose external loading may be unknown. Recognizing difficulties in obtaining purely theoretical or numerical solutions, the paper presents a hybrid means of stress analyzing such structures. Individual stresses, including those on the edge of the hole, are obtained in a loaded finite graphite/epoxy composite tensile plate containing a round hole by processing measured values of a single displacement field with an Airy stress function in complex variables. Displacements are recorded by digital image correlation. Traction-free conditions are satisfied analytically at the edge of the hole using conformal mapping and analytic continuation. Stresses satisfy equilibrium and strains satisfy compatibility. Significant features of the technique include its wide applicability, it smooths the measured information, does not require knowing the applied loading, and the rigorous mechanics foundation by which strains are determined from measured displacements.展开更多
The plane crack problem of an orthotropic functionally graded strip under concentrated loads is studied. The edge crack is perpendicular to the boundary and the elastic property of the material is assumed to vary depe...The plane crack problem of an orthotropic functionally graded strip under concentrated loads is studied. The edge crack is perpendicular to the boundary and the elastic property of the material is assumed to vary depending on thickness. By using an integral transform method, the present problem can be reduced to a single integral equation which is solved numerically. The influences of parameters such as the nonhomogeneity constant and the geometry parameters on the stress intensity factors (SIFs) are studied. It is found that the nonhomogeneity constant has important influences on the SIFs.展开更多
A reliability of flip-chip bonded die as a function of anisotropic conductive paste (ACP) hybrid materials, bonding conditions, and antenna pattern materials was investigated during the assembly of radio frequency ide...A reliability of flip-chip bonded die as a function of anisotropic conductive paste (ACP) hybrid materials, bonding conditions, and antenna pattern materials was investigated during the assembly of radio frequency identification(RFID) inlay. The optimization condition for flip-chip bonding was determined from the behavior of bonding strength. Under the optimized condition, the shear strength for the antenna printed with paste-type Ag ink was larger than that for Cu antenna. Furthermore, an identification distance was varied from the antenna materials. Comparing with the Ag antenna pattern, the as-bonded die on Cu antenna showed a larger distance of identification. However, the long-term reliability of inlay using the Cu antenna was decreased significantly as a function of aging time at room temperature because of the bended shape of Cu antenna formed during the flip-chip bonding process.展开更多
The sensitivity problem to mesh distortion and the low accuracy problem of the stress solutions are two inherent difficulties in the finite element method.By applying the fundamental analytical solutions (in global Ca...The sensitivity problem to mesh distortion and the low accuracy problem of the stress solutions are two inherent difficulties in the finite element method.By applying the fundamental analytical solutions (in global Cartesian coordinates) to the Airy stress function of the anisotropic materials,8-and 12-node plane quadrilateral hybrid stress-function (HS-F) elements are successfully developed based on the principle of the minimum complementary energy.Numerical results show that the present new elements exhibit much better and more robust performance in both displacement and stress solutions than those obtained from other models.They can still perform very well even when the element shapes degenerate into a triangle and a concave quadrangle.It is also demonstrated that the proposed construction procedure is an effective way for developing shape-free finite element models which can completely overcome the sensitivity problem to mesh distortion and can produce highly accurate stress solutions.展开更多
The mechanical behaviors near the interface crack tip for mode Ⅰ of orthotropic bimaterial are researched. With the help of the complex function method and the undetermined coefficient method, non-oscillatory field i...The mechanical behaviors near the interface crack tip for mode Ⅰ of orthotropic bimaterial are researched. With the help of the complex function method and the undetermined coefficient method, non-oscillatory field if the singularity exponent is a real number, and oscillatory field if the singularity exponent is a complex number are discussed, respectively. For each case, the stress functions are constructed which contain twelve undetermined coefficients and an unknown singularity exponent. Based on the boundary conditions, the system of non-homogeneous linear equations is obtained. According to the necessary and sufficient condition for the existence of solution for the system of non-homogeneous linear equations, the singularity exponent is determined under appropriate condition using bimaterial parameters. Both the theoretical formulae of stress intensity factors and analytic solutions of stress or displacement field near the interface crack tip are given. When the two orthotropic materials are the same, the classical results for orthotropic single material are deduced.展开更多
The elasto-plastic-damage behavior of anisotropic aluminum alloys is investigated under finite deformation using a physical mechanism based constitutive model.With an application to the structural calculation,the pres...The elasto-plastic-damage behavior of anisotropic aluminum alloys is investigated under finite deformation using a physical mechanism based constitutive model.With an application to the structural calculation,the present model is used to describe and analyze the mechanical response of anisotropic 6260-T6 aluminum alloy extrusions.For the tensile specimens extracted along three different material orientations from the extruded aluminum profile,twelve simulations are carried out covering four different specimen geometries.The simulation results in force-displacement response and central logarithmic axial strain evolution are compared with experimental results.From the comparisons,it can be concluded that the present model has the capacity to describe the behavior of anisotropic material.From the force-displacement curves,the anisotropy is observed in different material orientations,and the physical mechanism of anisotropy is analyzed.展开更多
We investigate the elastic and thermodynamic properties of nanolaminate VzA1C by using the ab initio pseudopotential total energy method. The axial compressibility shows that the c axis is always stiffer than a axis. ...We investigate the elastic and thermodynamic properties of nanolaminate VzA1C by using the ab initio pseudopotential total energy method. The axial compressibility shows that the c axis is always stiffer than a axis. The elastic constants revealed the structural instability at about 500 and 732 GPa. Furthermore, elastic constants C44 reached its maximum at about 550 GPa, dif- fering with the other four C^1, G2, C13 and 6"33 constants. The Poisson's ratio investigations demonstrated that a higher ionic or weaker covalent contribution in intra-atomic bonding and the degree of ionicity increases with pressure. The G/B and B]C44 investigations revealed that VzAIC is brittle and the brittleness decreases with pressure. Also, we found that V2A1C is elastic anisotropic materials and the degree of anisotropy rapidly rises with pressure. Study on Debye temperature and Grtineisen pa- rameter observed weak temperature and strong pressure responses, whereas the sensitive dependence in the thermal expansion coefficient and Helmholtz free energy are clearly seen.展开更多
基金Project(10834015)supported by the National Natural Science Foundation of ChinaProject(12SKY01-1)supported by the Doctoral Fund of Shangluo University,China
文摘Based on the Karma model and the Eggleston regularization technique of the strong interfacial energy anisotropy, a phase-field model was established for HCP materials. An explicit finite difference numerical method was used to solve phase field model and simulate the dendrite growth behaviors of HCP materials. Results indicate that the dendrite morphology presents obvious six-fold symmetry, and discontinuity in the variation of interface orientation occurs, resulting in a fact that the corners were formed at the tips of the main stem and side branches. When the interfacial energy anisotropy strength is lower than the critical value(1/35), the steady-state tip velocity of dendrite increases with anisotropy as expected. As the anisotropy strength crosses the critical value, the steady-state tip velocity drops down by about 0.89%. With further increase in anisotropy strength, the steady-state tip velocity increases and reaches the maximum value at anisotropy strength of 0.04, then decreases.
文摘The modeling and identification of anisotropic damping property of Ni based single crystal alloys are presented. The anisotropic material damping property is modeled by 3 D rheological equations and identified by using specimen modal damping ratios and FEM simulation. The measured damping ratios which exhibit strong anisotropy are predicted better by the method presented than by other methods.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719802) and the Natural Science Foundation of Zhejiang Province (No. Y104539), China
文摘Based on the analytical solution of electromagnetic scattering by a uniaxial anisotropic sphere in the spectral domain, an analytical solution to the electromagnetic scattering by a uniaxial left-handed materials (LHMs) sphere is obtained in terms of spherical vector wave functions in a uniaxial anisotropic LHM medium. The expression of the analytical solution contains only some one-dimensional integral which can be calculated easily. Numerical results show that Mie series of plane wave scattering by an isotropic LHM sphere is a special case of the present method. Some numerical results of electromagnetic scattering of a uniaxial anisotropic sphere by a plane wave are given.
基金Project(51675431)supported by the National Natural Science Foundation of China
文摘Uniaxial strain hardening exponent is not suitable for describing the strain hardening behaviors of the anisotropic materials, especially when material deforms in the multi-axial stress states. In this work, a novel method was proposed to estimate the equivalent strain hardening exponent of anisotropic materials based on an equivalent energy method. By performing extensive finite element (FE) simulations of the spherical indentation on anisotropic materials, dimensionless function was proposed to correlate the strain hardening exponent of anisotropic materials with the indentation imprint parameters. And then, a mathematic expression on the strain hardening exponent of anisotropic materials with the indentation imprint was established to estimate the equivalent strain hardening exponent of anisotropic materials by directly solving this dimensionless function. Additionally, Meyer equation was modified to determine the yield stress of anisotropic materials. The effectiveness and reliability of the new method were verified by the numerical examples and by its application on the TC1M engineering material.
基金National Natural Science Foundation of China(No.61671414)Natural Science Foundation for Young Scientists of Shanxi Province,China(No.201601D202035)
文摘The acoustic focusing effect of metamaterial has a wide range of applications in medicine,acoustic imaging,signal detection,etc.This paper presents an acoustic metamaterial applied to the acoustic focusing effect.The formation of acousticmetamaterial is designed into a cylindrical structure with three layers of ludox,cork and fluid rubber,which can produce a focusingphenomenon when acoustic waves propagate in air.For these strange phenomena,a scientific description is given theorietically.It can also be concluded that when the frequency of the incident acoustic wave increases?the number of peripheral bandsoutside the focusing poles will increase periodically.Besides,there are numerous groups of multipolar focusing phenomena inhigh frequency.The design of this acoustic metamaterial is successful through theorietical and experimental verification,therefore,it can be applied to acoustic communication and test.
基金Project supported by the National Natural Science Foundation of China (Nos. 10472102 and 1043203)the Foundation of Ningbo University (No. 2005014), China
文摘The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly dis-tributed load is investigated,with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem,the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable,from which the stresses can be derived. The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.
基金Supported by National Natural Science Foundation of China(No.05378041/E0807)Postdoctoral Foundation of Huazhong Universityof Science and Technology.
文摘Dynamic tests of three bonded and two unbonded full-prestressed concrete beams were carried out.The purpose was to seek the relation between prestressing force and natural frequency.Test results indicate that the frequency of prestressed concrete(PSC)beam increases with the increase in prestressing force approximately.The results are different from the dynamic characteristics of isotropic material beam subjected to compressive axial force which were put forward by Clough et al.The reason is that the beams were considered as isotropic,homogeneous,linear elastic material in the traditional analysis method.However,more accurate results are required in the analysis of frequency of PSC beam.The constitutive mode of PSC member is analyzed based on microstructure of concrete in this paper.The orthotropic linear elastic mode is used to analyze the relation between dynamic frequency and prestressing force of concrete beam,at the same time the equivalent stiffness of prestressed tendon relating to the prestressing force is added to the bending deformation stiffness of the beam.The analytical value agrees well with the test result,indicating that the current analysis method in this paper is feasible to full-prestressed concrete beam.
文摘By using Galerkin’s method, the finite element formulation is made for axisymmtric heat transfer problems for anisotropic materials from the heat transfer differential equations expressed in terms of heat fluid density. Results of an example show that the heat transfer anisotropy has an important effect on temperature field.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10847121,10804029,and 10904036
文摘We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materialsusing the integral equation method (IEM).Based on the superposition principle, we use Hertz vector formulations ofradiated fields to study the interaction of wave with matter.We derive in a new way the dispersion relation, Snell's lawand reflection/transmission coefficients by self-consistent analyses.Moreover, we find two new forms of the generalizedextinction theorem.Applying the IEM, we investigate the wave propagation through a slab and disclose the underlyingphysics, which are further verified by numerical simulations.The results lead to a unified framework of the IEM for thepropagation of wave incident either from a medium or vacuum in stratified dielectric-magnetic materials.
文摘In the present paper, initial-boundary value problem of plane stress state of micropolar theory of elasticity is considered for orthotropic material in the domain of thin rectangle. General hypotheses are formulated, which are the qualitative results of the asymptotic method of integration of the stated initial-boundary value problem. On the basis of the accepted hypotheses general applied one-dimensional models of dynamics of bending deformation of micropolar orthotropic elastic thin bars with free fields of displacements and rotations are constructed with and without consideration of shear deformations. With the help of the constructed models different dynamic problems of micropolar bars can be studied. Here concrete problems of free and forced vibrations of hinged supported micropolar orthotropic elastic thin bar are studied. Numerical analysis is done and specific features of dynamic characteristics of micropolar material are revealed. Particularly, it is shown that there is a frequency of vibrations of the micropolar bar that does not depend on bar sizes.
基金Supported by the Centre for Smart Materials of the Hong Kong Polytechnic University and a RGC grant PolyU5015/06P (internal code B-Q996) of the HKSAR, the NSFC under Grant No. 40876094National 863 Project under Grant Nos. 2009AA09Z102 and 2008AA09A403
文摘Transformation fieM method (TFM) is developed to estimate the anisotropic dielectric properties of crystal composites having arbitrary shapes and dielectric properties of crystal inclusions, whose principal dielectric axis are different from those of anisotropic crystal matrix. The complicated boundary-value problem caused by inclusion shapes is circumvented by introducing a transformation electric field into the crystal composites regions, and the effective anisotropic dielectric responses are formulated in terms of the transformation field. Furthermore, the numerical results show that the effective anisotropie dielectric responses of crystal composites periodically vary as a function of the rotating angle between the principal dielectric axes of inclusion and matrix crystal materials. It is found that at larger inclusion volume fraction the inclusion shapes induce profound effect on the effective anisotropic dielectric responses.
文摘The authors have prepared and characterized a chiral one-dimensional Cu(II)-Cr(VI) coordination polymer, [CuL2][Cr207] (L = (IR, 2R)-diaminocyclohexane), which exhibited intense d-d bands as well as charge transfer bands in the solid state electronic and CD spectra. Thermally-accessible lattice distortion was observed along the crystallographic a axis, which corresponded to Jahn-Teller distortion of Cu(II) chromophores. After firing [CuL2][Cr207], they could obtain a Cu(II)-Cr(VI) complex bimetallic oxide showing ferromagnetism and isotropic thermally-accessible lattice distortion. Preparation of composite materials of the coordination polymers and a complex bimetallic oxide could be confirmed by IR spectra and magnetic properties. It should be noted that the complex bimetallic oxide as the composite exhibited anisotropic thermally-accessible lattice distortion by adsorption of the chiral one-dimensional coordination polymer.
文摘Stresses, particularly those at geometric discontinuities, can influence structural integrity of engineering components. Motivated by the prevalence of cutouts in components, the objective of this paper is to demonstrate ability to stress analyze finite, circularly-perforated orthotropic composites whose external loading may be unknown. Recognizing difficulties in obtaining purely theoretical or numerical solutions, the paper presents a hybrid means of stress analyzing such structures. Individual stresses, including those on the edge of the hole, are obtained in a loaded finite graphite/epoxy composite tensile plate containing a round hole by processing measured values of a single displacement field with an Airy stress function in complex variables. Displacements are recorded by digital image correlation. Traction-free conditions are satisfied analytically at the edge of the hole using conformal mapping and analytic continuation. Stresses satisfy equilibrium and strains satisfy compatibility. Significant features of the technique include its wide applicability, it smooths the measured information, does not require knowing the applied loading, and the rigorous mechanics foundation by which strains are determined from measured displacements.
文摘The plane crack problem of an orthotropic functionally graded strip under concentrated loads is studied. The edge crack is perpendicular to the boundary and the elastic property of the material is assumed to vary depending on thickness. By using an integral transform method, the present problem can be reduced to a single integral equation which is solved numerically. The influences of parameters such as the nonhomogeneity constant and the geometry parameters on the stress intensity factors (SIFs) are studied. It is found that the nonhomogeneity constant has important influences on the SIFs.
基金supported by the Ministry of Commerce, Industry and Energy (MOCIE) of Korea (10031777)
文摘A reliability of flip-chip bonded die as a function of anisotropic conductive paste (ACP) hybrid materials, bonding conditions, and antenna pattern materials was investigated during the assembly of radio frequency identification(RFID) inlay. The optimization condition for flip-chip bonding was determined from the behavior of bonding strength. Under the optimized condition, the shear strength for the antenna printed with paste-type Ag ink was larger than that for Cu antenna. Furthermore, an identification distance was varied from the antenna materials. Comparing with the Ag antenna pattern, the as-bonded die on Cu antenna showed a larger distance of identification. However, the long-term reliability of inlay using the Cu antenna was decreased significantly as a function of aging time at room temperature because of the bended shape of Cu antenna formed during the flip-chip bonding process.
基金supported by the National Natural Science Foundation of China(Grant No.10872108,10876100)the Program for New Century Excellent Talents in University(Grant No. NCET-07-0477)+1 种基金the National Basic Research Program of China(Grant No. 2010CB832701)ASFC
文摘The sensitivity problem to mesh distortion and the low accuracy problem of the stress solutions are two inherent difficulties in the finite element method.By applying the fundamental analytical solutions (in global Cartesian coordinates) to the Airy stress function of the anisotropic materials,8-and 12-node plane quadrilateral hybrid stress-function (HS-F) elements are successfully developed based on the principle of the minimum complementary energy.Numerical results show that the present new elements exhibit much better and more robust performance in both displacement and stress solutions than those obtained from other models.They can still perform very well even when the element shapes degenerate into a triangle and a concave quadrangle.It is also demonstrated that the proposed construction procedure is an effective way for developing shape-free finite element models which can completely overcome the sensitivity problem to mesh distortion and can produce highly accurate stress solutions.
基金supported by the Natural Science Foundation of Shanxi Province (Grant No. 2011011021-3)
文摘The mechanical behaviors near the interface crack tip for mode Ⅰ of orthotropic bimaterial are researched. With the help of the complex function method and the undetermined coefficient method, non-oscillatory field if the singularity exponent is a real number, and oscillatory field if the singularity exponent is a complex number are discussed, respectively. For each case, the stress functions are constructed which contain twelve undetermined coefficients and an unknown singularity exponent. Based on the boundary conditions, the system of non-homogeneous linear equations is obtained. According to the necessary and sufficient condition for the existence of solution for the system of non-homogeneous linear equations, the singularity exponent is determined under appropriate condition using bimaterial parameters. Both the theoretical formulae of stress intensity factors and analytic solutions of stress or displacement field near the interface crack tip are given. When the two orthotropic materials are the same, the classical results for orthotropic single material are deduced.
基金supported by the National Natural Science Foundation of China(Grant No.11021262)the Fundamental Research Funds for the Central Universities(Grant No.WUT:2013-IV-021)
文摘The elasto-plastic-damage behavior of anisotropic aluminum alloys is investigated under finite deformation using a physical mechanism based constitutive model.With an application to the structural calculation,the present model is used to describe and analyze the mechanical response of anisotropic 6260-T6 aluminum alloy extrusions.For the tensile specimens extracted along three different material orientations from the extruded aluminum profile,twelve simulations are carried out covering four different specimen geometries.The simulation results in force-displacement response and central logarithmic axial strain evolution are compared with experimental results.From the comparisons,it can be concluded that the present model has the capacity to describe the behavior of anisotropic material.From the force-displacement curves,the anisotropy is observed in different material orientations,and the physical mechanism of anisotropy is analyzed.
基金supported by the National Natural Science Foundation of China (Grant Nos.10974139,10964002,11104247 and 11176020)the Provincial Natural Science Foundation of Guizhou (Grant Nos.[2009]2066 and TZJF-2008-42)+2 种基金the Provincial Natural Science Foundation of Hainan (Grant No.110001)the Provincial Natural Science Foundation of Chong Qing(Grant No.CSTCcstc2011jja90002)the Provincial Natural Science Foundation of Zhejiang (Grant No.Y201121807)
文摘We investigate the elastic and thermodynamic properties of nanolaminate VzA1C by using the ab initio pseudopotential total energy method. The axial compressibility shows that the c axis is always stiffer than a axis. The elastic constants revealed the structural instability at about 500 and 732 GPa. Furthermore, elastic constants C44 reached its maximum at about 550 GPa, dif- fering with the other four C^1, G2, C13 and 6"33 constants. The Poisson's ratio investigations demonstrated that a higher ionic or weaker covalent contribution in intra-atomic bonding and the degree of ionicity increases with pressure. The G/B and B]C44 investigations revealed that VzAIC is brittle and the brittleness decreases with pressure. Also, we found that V2A1C is elastic anisotropic materials and the degree of anisotropy rapidly rises with pressure. Study on Debye temperature and Grtineisen pa- rameter observed weak temperature and strong pressure responses, whereas the sensitive dependence in the thermal expansion coefficient and Helmholtz free energy are clearly seen.