In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. He...In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. Here, utilizing highly sensitive susceptometry of scanning superconducting quantum interference device microscopy, we probe the spin correlations of ABC-stacked Cr Br3under zero magnetic field. We identify a plateau feature in susceptibility above the critical temperature(TC) in thick samples.It signifies a crossover regime induced by the competition between easy-plane intralayer exchange anisotropy versus uniaxial interlayer anisotropy. The evolution of the critical behavior from the bulk to 2D shows that the competition between the anisotropies is magnified in the reduced dimension. It leads to a strongly frustrated ferromagnetic transition in the bilayer with fluctuation on the order of TC, which is distinct from both the monolayer and the bulk. Our observation demonstrates unconventional 2D critical behavior on a honeycomb lattice.展开更多
Cd3As2 was recently identified as a novel three-dimensional (3D) topological semimetal hosting the long-pursuing 3D Dirac Fermion. Crystals of Cd3As2 grown preferentially along the [100] and [112] directions were ob...Cd3As2 was recently identified as a novel three-dimensional (3D) topological semimetal hosting the long-pursuing 3D Dirac Fermion. Crystals of Cd3As2 grown preferentially along the [100] and [112] directions were obtained through the modified chemical vapor transfer growth method, thus allowing the examination of transport anisotropy. The resistivity and magnetore- sistance (MR) are basically linear with respect to magnetic field (H) in the measured temperature range of 2-300 K irrespective of the directions. The linear resistivity and MR are significantly anisotropic not only along [100] and [112] directions but also with respect to tilt angle between the growth directions and H, thus providing transport signatures of the 3D Dirac Fermion as well as the possible linear and anisotropic change of Weyl Fermi surface in H. Very large MR along the [100] direction is observed, even approaching 3100% at 2 K and 14 kOe (10e = 79.5775 A m^-l). The results would be helpful in renewing interest in studying emergent phenomena arising from bulk 3D Dirac Fermion as well as in paving the way for Cd3As2 to be used in magnetoelectronic sensors.展开更多
Perovskite manganites show exotic functionalities due to the coupling between spin, charge, orbital and lattice, such as metal-insulator transition, colossal magnetoresistance ( CMR ) , charge-orbital order and phas...Perovskite manganites show exotic functionalities due to the coupling between spin, charge, orbital and lattice, such as metal-insulator transition, colossal magnetoresistance ( CMR ) , charge-orbital order and phase separation. Recently, an extraordinary anisotropic magnetoresistance ( AMR ) has been observed in perovskite manganite single crystals. The AMR value is about 2 orders larger than that of the conventional 3E transition metals and alloys, which is attributed to tunable metal-insulator transition temperature modulated by the magnetic field. This result provides a new route for exploring novel AMR materials and their applications.展开更多
基金support by the National Key R&D Program of China (2021YFA1400100)the National Natural Science Foundation of China (11827805 and 12150003)+12 种基金Shanghai Municipal Science and Technology Major Project (2019SHZDZX01)support by the National Key R&D Program of China (2018YFE0202600)Beijing Natural Science Foundation (Z200005)support from JSPS KAKENHI (19H05790, 20H00354, and 21H05233)A3 Foresight by JSPSfinancial support from the National Natural Science Foundation of China (11874115)financial support from the Ministry of Science and Technology (MOST) of China (2018YFE0202700)the National Natural Science Foundation of China (11974422)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB30000000)the Fundamental Research Funds for the Central Universities, Chinathe Research Funds of Renmin University of China (22XNKJ30)supported by the National Natural Science Foundation of China (12104504)the China Postdoctoral Science Foundation (2021 M693479)。
文摘In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. Here, utilizing highly sensitive susceptometry of scanning superconducting quantum interference device microscopy, we probe the spin correlations of ABC-stacked Cr Br3under zero magnetic field. We identify a plateau feature in susceptibility above the critical temperature(TC) in thick samples.It signifies a crossover regime induced by the competition between easy-plane intralayer exchange anisotropy versus uniaxial interlayer anisotropy. The evolution of the critical behavior from the bulk to 2D shows that the competition between the anisotropies is magnified in the reduced dimension. It leads to a strongly frustrated ferromagnetic transition in the bilayer with fluctuation on the order of TC, which is distinct from both the monolayer and the bulk. Our observation demonstrates unconventional 2D critical behavior on a honeycomb lattice.
基金supported by the Ministry of Science and Technology of China(Grant Nos.2011CBA00110 and 2010CB923001)the National Natural Science Foundation of China(Grant Nos.11274367 and 61274017)Zhejiang SciTech Univeristy 521 talent project and Chinese Academy of Sciences
文摘Cd3As2 was recently identified as a novel three-dimensional (3D) topological semimetal hosting the long-pursuing 3D Dirac Fermion. Crystals of Cd3As2 grown preferentially along the [100] and [112] directions were obtained through the modified chemical vapor transfer growth method, thus allowing the examination of transport anisotropy. The resistivity and magnetore- sistance (MR) are basically linear with respect to magnetic field (H) in the measured temperature range of 2-300 K irrespective of the directions. The linear resistivity and MR are significantly anisotropic not only along [100] and [112] directions but also with respect to tilt angle between the growth directions and H, thus providing transport signatures of the 3D Dirac Fermion as well as the possible linear and anisotropic change of Weyl Fermi surface in H. Very large MR along the [100] direction is observed, even approaching 3100% at 2 K and 14 kOe (10e = 79.5775 A m^-l). The results would be helpful in renewing interest in studying emergent phenomena arising from bulk 3D Dirac Fermion as well as in paving the way for Cd3As2 to be used in magnetoelectronic sensors.
基金supported by National Natural Science Foundation of China(10874192)
文摘Perovskite manganites show exotic functionalities due to the coupling between spin, charge, orbital and lattice, such as metal-insulator transition, colossal magnetoresistance ( CMR ) , charge-orbital order and phase separation. Recently, an extraordinary anisotropic magnetoresistance ( AMR ) has been observed in perovskite manganite single crystals. The AMR value is about 2 orders larger than that of the conventional 3E transition metals and alloys, which is attributed to tunable metal-insulator transition temperature modulated by the magnetic field. This result provides a new route for exploring novel AMR materials and their applications.