期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Kernel-KNN高速公路异常交通态势预测研究
被引量:
2
1
作者
刘洁
舒国明
+1 位作者
石鑫
朱菲
《公路》
北大核心
2023年第2期232-236,共5页
为更精准预测高速公路异常交通态势变化,基于Kernel-KNN算法原理提出了态势预测模型,并调研京石高速公路异常交通态势场景下交通管理及运行监测数据,基于历史数据中速度与交通态势非线性映射关系,在MATLAB中实现了预测过程,确定了预测...
为更精准预测高速公路异常交通态势变化,基于Kernel-KNN算法原理提出了态势预测模型,并调研京石高速公路异常交通态势场景下交通管理及运行监测数据,基于历史数据中速度与交通态势非线性映射关系,在MATLAB中实现了预测过程,确定了预测模型最佳参数取值范围,最后验证了预测模型的有效性。结果表明:高速公路异常交通态势预测模型的精度主要与带宽值B、时间长度T和最近邻数k等3个参数相关,当B、k、T分别在[3,10]、[8,10]、[1,2]范围时,预测模型精度相对稳定,其预测平均绝对误差(MAE)为3.97、平均绝对百分比误差(MAPE)为6.95、均方根误差(RMSE)为3.96,模型精度优于其他算法,且以单日时段速度为例,其预测值与实际速度值较吻合。
展开更多
关键词
交通
工程
异常交通态势
Kernel-KNN算法
预测
原文传递
题名
基于Kernel-KNN高速公路异常交通态势预测研究
被引量:
2
1
作者
刘洁
舒国明
石鑫
朱菲
机构
河北交通职业技术学院
陕西轨道交通集团有限公司
出处
《公路》
北大核心
2023年第2期232-236,共5页
基金
2020年河北省高等学校自然科学青年基金项目,项目编号QN2020418。
文摘
为更精准预测高速公路异常交通态势变化,基于Kernel-KNN算法原理提出了态势预测模型,并调研京石高速公路异常交通态势场景下交通管理及运行监测数据,基于历史数据中速度与交通态势非线性映射关系,在MATLAB中实现了预测过程,确定了预测模型最佳参数取值范围,最后验证了预测模型的有效性。结果表明:高速公路异常交通态势预测模型的精度主要与带宽值B、时间长度T和最近邻数k等3个参数相关,当B、k、T分别在[3,10]、[8,10]、[1,2]范围时,预测模型精度相对稳定,其预测平均绝对误差(MAE)为3.97、平均绝对百分比误差(MAPE)为6.95、均方根误差(RMSE)为3.96,模型精度优于其他算法,且以单日时段速度为例,其预测值与实际速度值较吻合。
关键词
交通
工程
异常交通态势
Kernel-KNN算法
预测
分类号
U491.112 [交通运输工程—交通运输规划与管理]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于Kernel-KNN高速公路异常交通态势预测研究
刘洁
舒国明
石鑫
朱菲
《公路》
北大核心
2023
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部