Observations indicate an abnormal characteristic of saltwater intrusion in the upper Modaomen Waterway of the Pearl River Estuary,i.e.,the maximum salinity occurs during the neap tide or the coming moderate tide inste...Observations indicate an abnormal characteristic of saltwater intrusion in the upper Modaomen Waterway of the Pearl River Estuary,i.e.,the maximum salinity occurs during the neap tide or the coming moderate tide instead of during the spring tide.To explore the associated dynamic mechanisms,a high resolution three-dimensional numerical model was set up based on the Finite Volume Coastal Ocean Model(FVCOM),which covered the entire river network,the Pearl River Estuary,and the adjacent sea.Numerical experiments illustrated that the upper Modaomen Waterway is significantly influenced by the saltwater intrusion from the Hongwan Waterway,a narrow and shallow channel connecting the Modaomen Waterway to the sea.Specific topography,spring-neap tidal variation,local wind stress,and their interaction drive an up-estuary residual current in the Hongwan Waterway,which is much stronger during the neap tide than during the spring tide.As a result,more saltwater in the Hongwan Waterway is spilled over into the Modaomen Waterway during the neap tide or the coming moderate tide.This is the inherent dynamic mechanism why the saltwater intrusion in the upper Modaomen Waterway reaches its maximum during the neap tide or the coming moderate tide.Besides,we also found that the winter prevailing wind can pronouncedly enhance the saltwater intrusion in the Modaomen Waterway.展开更多
We calculated numerically the localization length of one-dimensional Anderson model with correlated diagonal disorder. For zero energy point in the weak disorder limit, we showed that the localization length changes c...We calculated numerically the localization length of one-dimensional Anderson model with correlated diagonal disorder. For zero energy point in the weak disorder limit, we showed that the localization length changes continuously as the correlation of the disorder increases. We found that higher order terms of the correlation must be included into the current perturbation result in order to give the correct localization length, arid to connect smoothly the anomaly at zero correlation with the perturbation result for large correlation.展开更多
基金supported by the "Creative Research Group" of National Natural Science Foundation of China (Grant No. 41021064)the National Basic Scientific Research Program of Global Change (Grant No.2010CB951201)Marine Special Program for Scientific Research on Public Causes (Grant No. 200705019)
文摘Observations indicate an abnormal characteristic of saltwater intrusion in the upper Modaomen Waterway of the Pearl River Estuary,i.e.,the maximum salinity occurs during the neap tide or the coming moderate tide instead of during the spring tide.To explore the associated dynamic mechanisms,a high resolution three-dimensional numerical model was set up based on the Finite Volume Coastal Ocean Model(FVCOM),which covered the entire river network,the Pearl River Estuary,and the adjacent sea.Numerical experiments illustrated that the upper Modaomen Waterway is significantly influenced by the saltwater intrusion from the Hongwan Waterway,a narrow and shallow channel connecting the Modaomen Waterway to the sea.Specific topography,spring-neap tidal variation,local wind stress,and their interaction drive an up-estuary residual current in the Hongwan Waterway,which is much stronger during the neap tide than during the spring tide.As a result,more saltwater in the Hongwan Waterway is spilled over into the Modaomen Waterway during the neap tide or the coming moderate tide.This is the inherent dynamic mechanism why the saltwater intrusion in the upper Modaomen Waterway reaches its maximum during the neap tide or the coming moderate tide.Besides,we also found that the winter prevailing wind can pronouncedly enhance the saltwater intrusion in the Modaomen Waterway.
基金Supported by National Natural Science Foundation of China under Grant No.10374093the Knowledge Innovation Project of Chinese Academy of Sciences
文摘We calculated numerically the localization length of one-dimensional Anderson model with correlated diagonal disorder. For zero energy point in the weak disorder limit, we showed that the localization length changes continuously as the correlation of the disorder increases. We found that higher order terms of the correlation must be included into the current perturbation result in order to give the correct localization length, arid to connect smoothly the anomaly at zero correlation with the perturbation result for large correlation.