-
题名基于交易网络特征增强的比特币异常地址识别
- 1
-
-
作者
张梦楠
吴礼发
-
机构
南京邮电大学网络空间安全学院
-
出处
《计算机技术与发展》
2023年第9期8-15,共8页
-
基金
国家重点研发计划项目(2019YFB2101704)。
-
文摘
比特币由于其便捷性、匿名性、全球性、高流动性的特点,为犯罪分子使用其作为价值传递的媒介从事犯罪活动提供了理想的工具,产生大量利用比特币进行勒索、洗钱、非法毒品、武器交易等异常交易问题。传统基于有监督的异常地址识别方法由于交易信息单一,不能全面和准确地反映地址间的关系,异常地址识别率较低。该文提出了一种基于交易网络特征增强的比特币异常地址识别方法。该方法将比特币交易数据转化为复杂网络,并提出一种基于改进的PageRank的节点重要性特征构造方法,根据比特币交易特点,引入比特币交易额度和频率相关性得到新的PageRank值并加入特征集。通过对不同的机器学习方法进行比较以获得最佳的预测模型,提升检测模型的分类效果。与传统的检测方法相比,结合网络信息的模型具有更好的检测性能,其中极限梯度提升树(XGBoost)分类器效果最好,F1分数由原来的0.83提升至0.94,AUC值由原来的0.88提升至0.95。
-
关键词
比特币
异常地址识别
机器学习
特征提取
网络科学
-
Keywords
Bitcoin
abnormal address recognition
machine learning
feature extraction
network science
-
分类号
TP309
[自动化与计算机技术—计算机系统结构]
-