期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于不相关性检验的大数据异常抽取算法 被引量:1
1
作者 谌裕勇 陆兴华 《计算机仿真》 北大核心 2021年第3期245-248,460,共5页
针对当前大数据异常抽取方法存在耗时长、精度低的问题,提出新的大数据异常抽取算法。构建基于Hadoop的大数据异常风险监测系统,对大数据流量分流处理,使用预处理端与储存端监测异常数据风险,利用最小二乘支持向量机计算风险趋势;引入Fi... 针对当前大数据异常抽取方法存在耗时长、精度低的问题,提出新的大数据异常抽取算法。构建基于Hadoop的大数据异常风险监测系统,对大数据流量分流处理,使用预处理端与储存端监测异常数据风险,利用最小二乘支持向量机计算风险趋势;引入Fisher函数,构建不相关性检验模型;利用模糊遗传方法算出异常数据流汇聚于多层空间内的模糊聚类中心,获取异常数据属性集分类增益方程,完成大数据异常抽取。根据实验结果可知:所提方法的最高耗时为9s,明显低于传统方法,且所提方法的抽取结果与实际情况一致。可得结论为:所提方法具有高速率、高精度优势,为大数据安全传输与应用提供技术基础。 展开更多
关键词 不相关性检验 异常抽取 独立成分分析 大数据特征 耦合关联
下载PDF
基于大语言模型的体检总检结论自动生成研究
2
作者 郑路程 李旭涛 徐敏 《小型微型计算机系统》 CSCD 北大核心 2024年第11期2569-2575,共7页
本文研究了基于大语言模型自动生成体检总检结论的方法.与常规文本摘要生成任务不同,体检总检结论的生成特别关注体检异常检查结果,要求生成结论不仅准确,还需遵循医学领域的专业知识和标准.为此,本文基于经医疗知识问答数据微调的大型... 本文研究了基于大语言模型自动生成体检总检结论的方法.与常规文本摘要生成任务不同,体检总检结论的生成特别关注体检异常检查结果,要求生成结论不仅准确,还需遵循医学领域的专业知识和标准.为此,本文基于经医疗知识问答数据微调的大型预训练语言模型,提出了一个体检总检结论自动生成方法.该方法包括两个关键模块:1)异常信息抽取模块,利用少量标注数据增强模型在抽取科室小结中异常检查结果识别能力;2)结论项排序模块,使得生成内容符合体检总检结论的顺序规范.在真实体检数据集上的实验表明,这两个核心模块有效提升了总检结论生成质量.本文为医疗文档自动生成技术提供了新思路,展现了大语言模型在医疗人工智能应用中的前瞻性. 展开更多
关键词 体检科室小结 体检总检结论 大语言模型 异常文本抽取 结论项重排 医疗问答
下载PDF
Prediction of Eukaryotic Protein Subcellular Location Using a Novel Feature Extraction Method and Support Vector Machine
3
作者 Zhang Shaowu Pan Quan +1 位作者 Wu Yonghong Cheng Yongmei 《西北工业大学学报》 EI CAS CSCD 北大核心 2005年第6期798-803,共6页
The rapidly increasing number of sequences entering into the genome databank has created the need for fully automated methods to analyze them.Knowing the cellular location of a protein is a key step towards understand... The rapidly increasing number of sequences entering into the genome databank has created the need for fully automated methods to analyze them.Knowing the cellular location of a protein is a key step towards understanding its function.The development in statistical prediction of protein attributes generally consists of two cores: one is to construct a training dataset and the other is to formulate a predictive algorithm.The latter can be further separated into two subcores: one is how to give a mathematical expression to effectively represent a protein and the other is how to find a powerful algorithm to accurately perform the prediction.To predict the subcellular location of eukaryotic protein,a systematic prediction approach comprised of a novel feature extraction method,an idea of combining this feature extraction method with support vector machine(SVM) algorithm,and ’one-versus-rest’ & ’all-versus-all’ strategies have been proposed in this paper.Consequently,the total predictive accuracies reach 95.5% for four locations.Compared with existing methods,this new approach provides better predictive performance.For example,it is 13.5%,5.1% higher than Yuan’s and Hua’s methods respectively.These results demonstrate the applicability of this new method and concept and possible improvement of prediction for the protein subcellular location.It is anticipated that the current approach may also have a series of impacts on the prediction of other protein features. 展开更多
关键词 亚细胞蛋白质 真核状态 异常特征抽取 亚细胞位置 媒介支持仪器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部